
June 9, 1995 6:25 PM Page 1

A Theory of Primitive Objects
Second-Order Systems

Martín Abadi and Luca Cardelli

Digital Equipment Corporation, Systems Research Center

Abstract

We describe a second-order calculus of objects. The calculus supports object sub-
sumption, method override, and the type Self. It is constructed as an extension of
System F with subtyping, recursion, and first-order object types.

1. Introduction
To its founders and practitioners, object-oriented programming is a new computational paradigm

distinct from ordinary procedural programming. Objects and method invocations, in their purest form,
are meant to replace procedures and calls, and not simply to complement them. Is there, then, a corre-
sponding “λ-calculus” of objects, based on primitives other than abstraction and application?

Such a specialized calculus may seem unnecessary, since untyped objects and methods can be re-
duced to untyped λ-terms. However, this reduction falters when we take typing and subtyping into ac-
count. It becomes even more problematic when we consider the peculiar second-order object-oriented
concept of the Self type.

This paper is part of an effort to identify object calculi that are as simple and fruitful as λ-calculi.
Towards this goal, we have considered untyped, first-order, and second-order systems, their equational
theories, and their semantics. Here we describe, in essence, an object-oriented version of the
polymorphic λ-calculus.

The starting point for this paper is a first-order calculus of objects and their types, introduced in
[2]. In this calculus, an object is a collection of methods. A method is a function having a special pa-
rameter, called self, that denotes the same object the method belongs to. The calculus supports object
subsumption and method override. Subsumption is the ability to emulate an object by means of another
object that has more refined methods. Override is the operation that modifies the behavior of an object,
or class, by replacing one of its methods.

We add standard second-order constructs to the first-order calculus. The resulting system is an ex-
tension of Girard’s System F [14, 15, 22] with objects, subtyping, and recursion. Only the first-order
object constructs are new. However, the interaction of second-order types, recursive types, and objects
types is a prolific one. Using all these constructs, we define an interesting new quantifier, ς (sigma),
similar to the µ binder of recursive types. This quantifier satisfies desirable subtyping properties that µ
does not satisfy, and that are important in examples with objects. Using ς and a covariance condition
we formalize the notion of Self, which is the type of the self parameter.

Page 2 June 9, 1995 6:25 PM

We take advantage of Self in some challenging examples. One is a treatment of the traditional ge-
ometric points. Another is a calculator that modifies its own methods. A third one is an object-oriented
version of Scott numerals, exploiting both Self and polymorphism.

Some modern object-oriented languages support Self, subsumption, and override (e.g., [16, 23]).
Correctness is obtained via rather subtle conditions, if at all. We explain Self by deriving its rules from
those for more basic constructs. Thus, the problems of consistency are reduced, and hopefully clarified.

Our main emphasis is on sound typing rules for objects; because of this emphasis we restrict our-
selves to a stateless computational model. However, our type theories should be largely applicable to
imperative and concurrent variants of the model, and our equational theories reveal difficulties that
carry over as well.

In the next section we review the first-order calculus. Section 3 concerns the second-order con-
structs, the quantifier ς, and matters of covariance and contravariance. In section 4 we combine the
quantifier ς with object types to formalize the type Self, and we present examples. In section 5 we dis-
cuss the problem of overriding methods that return values of type Self. We conclude with a comparison
with related work. The appendix lists all the typing and equational rules used in the body of the paper.

As background, we assume some familiarity with the polymorphic λ-calculus and with subtyping.
We summarize our previous work on first-order systems in the next section; however, the reader may
want to consult the full report on that work [Abadi, Cardelli 1994c]. A tutorial by Fisher and Mitchell
[13] may also be helpful as background material.

As we mentioned above, this paper is part of a larger effort. Elsewhere, we consider denotational
models [1]; we study imperative semantics [3]; we give direct rules for Self, building on the present
work [3]; and we compare subtyping with the related notion of matching [4]. Palsberg has studied type
inference for our first-order systems [20]; the problems of type inference remain open for second-order
systems.

2. First-Order Calculi
 In this section we review the typed first-order object calculus introduced in [2]. We also recall its

limitations, which motivate the second-order systems that are the subject of this paper.

2.1 Informal Syntax and Semantics of Objects

We consider a minimal object calculus including object formation, method invocation, and method
override. The calculus is very simple, with just four syntactic forms, and even without functions. It is
obviously object-oriented: it has built-in objects, methods with self, and the characteristic semantics of
method invocation and override. It can express object-oriented examples directly.

Syntax of the first-order ς-calculus

A,B ::= [li=Bi iÏ1..n] (li distinct) types

a,b ::= terms

x variable

[li=ς(xi:A)bi iÏ1..n] (li distinct) object

a.l field selection / method invocation

a.lfiüς(x:A)b field update / method override

Notation
¢¢¢¢ We use indexed notation of the form Φi iÏ1..n to denote sequences Φ1,...,Φn.

June 9, 1995 6:25 PM Page 3

¢¢¢¢ We use “@” for “equal by definition”, “7” for “syntactically identical”, and “=” for “provably
equal” when applied to two terms.

¢¢¢¢ [...l,l’:A ...] stands for [...l:A, l’:A...].
¢¢¢¢ [..., l=b, ...] stands for [..., l=ς(y:A)b, ...], for an unused y. We call l=b a field.
¢¢¢¢ o.lj:=b stands for o.ljfiüς(y:A)b, for an unused y. We call it an update operation.
¢¢¢¢ We write b{x} to highlight that x may occur free in b. The substitution of a term c for the free

occurrences of x in b is written b{x←c}, or b{c} where x is clear from context.
¢¢¢¢ We identify ς(x:A)b with ς(y:A)(b{x←y}), for any y not occurring free in b.

An object is a collection of components li=ai, for distinct labels li and associated methods ai; the
order of these components does not matter. The object containing a given method is called the
method’s host object. The symbol ς is used as a binder for the self parameter of a method; ς(x:A)b is a
method with self parameter x of type A, to be bound to the host object, and body b.

A field is a degenerate method that ignores its self parameter; we talk about field selection and
field update. We use the terms selection and invocation and the terms update and override somewhat
interchangeably.

A method invocation is written o.lj, where lj is a label of o. It equals the result of the substitution of
the host object for the self parameter in the body of the method named lj.

A method override is written o.ljfiüς(y:A)b. The intent is to replace the method named lj of o with
ς(y:A)b; this is a single operation that involves a construction binding y in b. A method override equals
a copy of the host object where the overridden method has been replaced by the overriding one. The
semantics of override is functional; an override on an object produces a modified copy of the object.

An object of type [li:Bi iÏ1..n] can be formed from a collection of n methods whose self parameters
have type [li:Bi iÏ1..n] and whose bodies have types B1,...,Bn. When writing [li:Bi iÏ1..n], we always as-
sume that the li are distinct and that permutations do not matter. The type [li:Bi iÏ1..n] exhibits only the
result types Bi, and not the types of ς-bound variables. The types of all these variables is [li:Bi iÏ1..n].
When the method named li of an object of type [li:Bi iÏ1..n] is invoked, it produces a result of type Bi. A
method can be overridden while preserving the type of its host object. (The type of the host object can-
not be allowed to change because other methods assume it, and hence soundness could be compro-
mised.) We formalize the typing rules for objects in section 2.2.

Self-substitution is at the core of the semantics of invocation. Because of this, it is easy to define
non-terminating computations without explicit use of recursion:

let o @ [l=ς(x: [l:[]])x.l] then o.l = x.l{x←o} 7 o.l = ...

Using recursive types, it is possible for a method to return or to modify self. For example, let us infor-
mally assume a recursive type A equal to [l:A]; then we can write:

let o’ @ [l = ς(x:A)x] then o’.l = x{x←o’} 7 o’

let o” @ [l = ς(y:A) (y.lfiüς(x:A)x)] then o”.l = (o”.lfiüς(x:A)x) = o’

We place particular emphasis on the ability to modify self. In object-oriented languages, it is common
for a method to modify field components of self. Generalizing, we allow methods to override other
methods of self, or even themselves. This feature does not significantly complicate the problems that
we address.

We do not provide an operation to extract a method from an object as a function. Such an opera-
tion is incompatible with object subsumption in typed calculi; in brief, the domain of the function ex-
tracted would have to be the “true type” of the object, but this type may have been forgotten by sub-
sumption. Thus, methods are inseparable from objects and cannot be recovered as functions. This con-
sideration inspired the use of a specialized ς-notation instead of the familiar λ-notation for parameters.

Other choices of primitives are possible; some are discussed in [2].

Page 4 June 9, 1995 6:25 PM

2.2 Object Typing and Subtyping

We now review the typing and subtyping rules for objects. Each rule has a number of antecedent
judgments above a horizontal line and a single conclusion judgment below the line. Each judgment has
the form E ∫ ℑ , for an environment E and an assertion ℑ depending on the judgment. An antecedent of
the form “E,Ei ∫ ℑ i ÓiÏ1..n” is an abbreviation for n antecedents “E,E1 ∫ ℑ 1 ... E,En ∫ ℑ n” if n>0, and
if n=0 for “E ∫ Q”, which we read “E is well-formed”. Instead, a rule containing “jÏ1..n” indicates that
there are n separate rules, one for each j. Environments contain typing assumptions for variables; later
they will also contain type-variable declarations and subtyping assumptions.

First we give rules for proving type judgments E ∫ B (“B is a well-formed type in the environment
E”) and value judgments E ∫ b : B (“b has type B in E”).

(Type Object) (li distinct) (Val x) (Val Object) (where A7[li:Bi iÏ1..n])

E ∫ Bi ÓiÏ1..n E, x:A, E’ ∫ Q E, xi:A ∫ bi : Bi ÓiÏ1..n
—————— ————— —————————

E ∫ [li:Bi iÏ1..n] E ∫ x: A E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Override) (where A7[li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n] jÏ1..n E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

 A characteristic of object-oriented languages is that an object can emulate another object that has
fewer methods. We call this notion subsumption, and say that an object can subsume another one. We
define a particular form of subsumption that is induced by a subtyping relation between object types.
An object that belongs to a given object type A also belongs to any supertype B of A, and can subsume
objects in B. The judgment E ∫ A <: B asserts “A is a subtype of B in environment E”.

(Type Top) (Sub Top) (Sub Object) (li distinct) (Val Subsumption)

E ∫ Q E ∫ A E ∫ Bi ÓiÏ1..n+m E ∫ a : A E ∫ A <: B
——— ——–—— —————————— ————————

E ∫ Top E ∫ A <: Top E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n] E ∫ a : B

For convenience, we add a constant, Top, a supertype of every type. The subtyping rule for objects al-
lows a longer object type [li:Bi iÏ1..n+m] to be a subtype of a shorter object type [li:Bi iÏ1..n]. Moreover,
object types are invariant in their components: [li:Bi iÏ1..n+m]<:[li:Bi’ iÏ1..n] requires Bi7Bi’ for iÏ1..n.
This is necessary for soundness, basically because all components are both readable and writable.

The full first-order calculus of objects with subtyping is called Ob1<:; it can be described as a
union of formal system fragments ∆x∪ ∆K∪ ∆Ob∪ ∆<:∪ ∆<:Ob, which are listed in appendices A and C. To
facilitate comparison with other first-order calculi, Ob1<: includes a constant type via the fragment ∆K,
but in this paper we mostly ignore constants.

2.3 Equational Theories

We associate an equational theory with Ob1<:, and with each of the calculi we study. The judgment
E ∫ b ↔ c : A asserts that b and c are equal as elements of A. The equational rules for Ob1<: are
∆=∪ ∆=x∪ ∆=Ob∪ ∆=<:∪ ∆=<:Ob from appendices A and D. We give only the main rules for objects and
subtyping: two rules motivated by the use of subtyping, and two evaluation rules for selection and
override.

June 9, 1995 6:25 PM Page 5

(Eq Subsumption)

 E ∫ a ↔ a’ : A E ∫ A <: B
——————————

E ∫ a ↔ a’ : B

(Eq Sub Object) (where A7[li:Bi iÏ1..n], A’7[li:Bi iÏ1..n+m])

E, xi:A ∫ bi : Bi ÓiÏ1..n E, xj:A’ ∫ bj : Bj ÓjÏn+1..n+m
—————–———————————————

E ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A’)bi iÏ1..n+m] : A

(Eval Select) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A jÏ1..n
————–————

E ∫ a.lj ↔ bj{xj←a} : Bj

(Eval Override) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
————————————————–————

E ∫ a.ljfiüς(x:A)b ↔ [lj=ς(x:A’)b, li=ς(xi:A’)bi iÏ(1..n+m)-{j}] : A

According to rule (Eq Sub Object), an object can be truncated to its externally visible methods, but
only if those methods do not depend on hidden methods. The truncated object would not work other-
wise.

2.4 Function Types and Recursive Types

Functions (in the form of λ-terms) can be added to Ob1<: via standard rules, obtaining a calculus
called FOb1<:. As discussed in section 3.2, functions can be encoded in terms of objects and second-
order constructs.

Recursive types and values can also be added via standard rules, obtaining a calculus called
Ob1<:µ. The explicit isomorphism between µ(X)A and A{X←µ(X)A} is given by two operators called
fold and unfold. Given c of type A{X←µ(X)A}, fold(A,c) has type A; conversely, given c of type
µ(X)A, unfold(c) has type A{X←µ(X)A}. For example, the terms o’ and o” of section 2.1 can be rep-
resented formally as follows:

let A @ µ(X)[l:X]

let UA @ [l:A]

let o’ @ fold(A,[l = ς(x:UA)fold(A,x)]) then o’ has type A

let o” @ fold(A,[l = ς(y:UA) (y.lfiüς(x:UA)fold(A,x))] then o” has type A

The rules for functions and recursion are listed in appendices C and D.

2.5 The Shortcomings of First-Order Calculi

The Ob1<:µ calculus, consisting of objects with recursion and subtyping, is a plausible candidate as
a paradigm for first-order object-oriented languages. It can be used to express many standard examples
from the literature. In particular, we can write types of movable points:

P1 @ µ(X)[x:Int, mv_x:Int→X] one-dimensional movable points

P2 @ µ(X)[x,y:Int, mv_x,mv_y:Int→X] two-dimensional movable points

Page 6 June 9, 1995 6:25 PM

We would then expect to obtain P2 <: P1, since intuitively P2 extends P1. But this is not provable, be-
cause the invariance of object types blocks the application of the recursive subtyping rule (Sub Rec) to
the result type of mv_x.

Moreover, if we somehow allow P2<:P1, we obtain an inconsistency. Briefly, suppose that we use
subsumption from p:P2 to p:P1, and then override the mv_x method of p with one that returns a proper
element of P1. Then, some other method of p may go wrong because it assumes that mv_x produces an
element of P2.

Hence, the failure of P2<:P1 is necessary. At the same time, it is unfortunate: in the common situa-
tion where a method returns an updated self, we lose all useful subsumption relations. In [2] we discuss
the standard solution used in object-oriented languages such as Simula-67 and Modula-3 [12, 19]. This
solution sacrifices static typing information which must be recovered dynamically, thus abandoning the
static typing of subsumption. This paper describes another solution that preserves static typing by tak-
ing advantage of second-order constructs.

3. Second-Order Calculi
In this section we present standard second-order extensions of first-order calculi. No new or un-

usual constructions are introduced. However, second-order quantifiers can be combined with recursive
types to produce an interesting new concept that is recognizable as formalizing the type Self. The inter-
action of Self with object types is the subject of section 4.

We first introduce universal quantifiers and existential quantifiers. From existential quantifiers and
recursion we define the quantifier ς. For the purpose of defining Self, only existentials and recursion
are needed; one could dispense with universals. For the purposes of object-oriented languages, only the
quantifier ς is needed; one could dispense with most of the second-order baggage. However, as usual,
universal quantifiers may still be useful to provide polymorphism, and existential quantifiers to provide
data abstraction.

We use the notation B{X} to single out the occurrences of X free in B; then B{A} stands for
B{X←A} when X is clear from the context.

3.1 Universal and Existential Quantifiers

We adopt bounded universal quantifiers Ó(X<:A)B following [9, 11]. Bounded existential quanti-
fiers Ô(X<:A)B [10] can be encoded as Ó(Y<:Top)(Ó(X<:A)B{X}→Y)→Y. However, this encoding
does not validate a natural and desirable η rule, called (Eval Repack<:) in appendix D. Therefore, we
take bounded existentials as primitive.

We write λ(X<:A)b{X} for a bounded polymorphic function of type Ó(X<:A)B{X} that for any
subtype A’ of A produce a result b{A’} of type B{A’}. We write c(A’) for the application of a function
c:Ó(X<:A)B{X} to a type A’<:A, with a result of type B{A’}.

An existentially quantified type Ô(X<:A)B{X} is the type of the pairs <A’,b> where A’ is a sub-
type of A and b is a term of type B{A’}. The type Ô(X<:A)B{X} can be seen as a partially abstract
data type with interface B{X} and with representation type X known only to be a subtype of A. It is
partially abstract in that it gives some information about the representation type, namely a bound. A
pair <A’,b> describes an element of the partially abstract data type with representation type A’ and
implementation b{A’} [10, 18]. In order to be fully explicit, we write the pair <A’,b> more verbosely
in the form:

pack X<:A=A’, b{X}:B{X}

A pair c of type Ô(X<:A)B{X} can be used in the construct:

June 9, 1995 6:25 PM Page 7

open c as X<:A,x:B{X} in d{X,x}:D

where d has access to the representation type X and implementation x, and must produce a result of a
type D that does not depend on X. The requirement that X does not occur in D is necessary in order to
preserve the abstraction. At evaluation time, if c is <A’,b>, then the result is d{A’,b}.

We assemble the following second-order calculi using fragments defined in the appendix:

F<: @@@@ ∆x ∪ ∆→ ∪ ∆<: ∪ ∆<:X ∪ ∆<:→ ∪ ∆<:ÓÓÓÓ ∪ ∆<:ÔÔÔÔ F<:µ @@@@ F<: ∪ ∆<:µ

Ob<: @@@@ ∆x ∪ ∆Ob ∪ ∆<: ∪ ∆<:X ∪ ∆<:Ob ∪ ∆<:ÓÓÓÓ ∪ ∆<:ÔÔÔÔ Ob<:µ @@@@ Ob<: ∪ ∆<:µ

FOb<: @@@@ F<: ∪ ∆Ob ∪ ∆<:Ob FOb<:µ @@@@ FOb<: ∪ ∆<:µ

The calculi assembled in the first row are second-order calculi with function types, those in the second
row have object types, and those in the third row have both. The calculi in the right column have recur-
sive types, while those in the left column do not. Throughout, constant types are left out because free
algebras can be encoded [5].

Each of the calculi includes a set of typing fragments and a set of equational fragments. In assem-
bling the calculi, however, we list only the typing fragments; the corresponding equational fragments
are left implicit, since they can be easily identified (see appendix D). For example, calculi with the typ-
ing fragment ∆<:µ always include the equational fragment ∆=<:µ.

F<: is described in [9], but we assume only the simpler equational theory used in [11], and we add
existentials. The equational rules of F<: and its extensions are somewhat conservative. In particular,
they do not equate pack terms based on different representation types. For example, we might expect
that the terms (pack X<:Int=Nat, (0,succNat)) and (pack X<:Int=Int, (0,succInt)) be equal at type
Ô(X<:A)X×(X→X) because they have the same behavior, but this does not seem to be derivable. This
can be proved using parametricity in the theory of [21]. For simplicity we restrict attention to our con-
servative rules, although more ambitious rules may have advantages in combination with objects.

Universals are contravariant and existentials are covariant in their bounds, as reflected by the rules
(Sub All) and (Sub Exists). Moreover, if B is covariant in X (written B{X+}), then Ô(X<:A)B{X} is
isomorphic to B{A}. This isomorphism does not necessarily hold otherwise. In particular,
[li:Bi{X} iÏ1..n] is not covariant in X even when each Bi{X} is, and so Ô(X<:A)[li:Bi{X} iÏ1..n] is not
isomorphic to [li:Bi{A} iÏ1..n]. For instance, [l:X] is not covariant in X, and Ô(X<:Int)[l:X] is not iso-
morphic to [l:Int]. The failure of this isomorphism is fairly clear since values of types Ô(X<:Int)[l:X]
and [l:Int] cannot be used in the same ways; for example, if o has type [l:Int] then it is legal to set
o.l:=3, but there is no corresponding operation on values of type Ô(X<:Int)[l:X].

In the next section we show that Ob<: can encode F<:, and that Ob<:µ can encode F<:µ (ignoring the
first-order η rule). Conversely, in [1] we show that Ob<: can be translated into a typed λ-calculus with-
out objects and without subtyping. In collaboration with Ramesh Viswanathan, we have since obtained
a translation of Ob<: and Ob<:µ into F<:µ; this latest translation has the property of preserving subtyp-
ings. These translations of object calculi are rather complex, so we do not describe them further in this
paper.

3.2 Encodings of Product and Function types

In first-order systems, object types can encode product and function types in calculi without sub-
typing, validating β-reductions [2]. When subtyping is added, the encodings yield invariant product and
function types. We review the translation of function types. Strictly speaking, it is defined on type
derivations, but we write it as a translation of type-annotated λ-terms.

Page 8 June 9, 1995 6:25 PM

Translation of invariant function types

äA→Bã @ [arg:äAã, val:äBã]

äxAãρ @ ρ(x) ρ Ï Var → Term

äbA→B(aA)ãρ @

(äbãρ.arg fiü ς(x:äA→Bã) äaãρ).val for x Ì FV(äaãρ)

äλ(x:A)bBãρ @
[arg = ς(x:äA→Bã) x.arg,

 val = ς(x:äA→Bã) äbãρ{x←x.arg}]

In this translation, a function is mapped to an object with two methods, arg and val; the code of the
function is in val, the argument is put in arg, and the function accesses it through the self variable x as
x.arg. Similarly, invariant product types can be defined by äA×Bã @ [fst:äAã, snd:äBã].

These encodings yield invariant product and function types because object types are invariant in
their components. At the second order, though, we have quantifiers that are variant in their bounds;
combining them with object types, we can define a variant version of function types:

A →̇ B @ Ó(X<:A) Ô(Y<:B) [arg:X, val:Y]

We obtain A→̇B <: A’→̇B’ if A’ <: A and B <: B’.
This idea gives rise to an encoding of the first-order λ-calculus with subtyping but no η rule into

Ob<::

Translation of variant function types

äA→Bã @ Ó(X<:äAã) Ô(Y<:äBã) [arg:X, val:Y] 7 äAã →̇äBã

äxAãρ @ ρ(x) ρ Ï Var → Term

äbA→B(aA)ãρ @

open äbãρ(äAã) as Y<:äBã, y:[arg:äAã, val:Y]

in (y.arg fiü ς(x:[arg:äAã, val:Y]) äaãρ).val for Y,y,x Ì FV(äaãρ)

äλ(x:A)bBãρ @
λ(X<:äAã)

(pack Y<:äBã=äBã,

[arg = ς(x:[arg:X, val:äBã]) x.arg,

 val = ς(x:[arg:X, val:äBã]) äbãρ{x←x.arg}]

 : [arg:X, val:Y])

This translation can be extended trivially to recursive types and to second-order quantifiers. Hence
our largest calculus, FOb<:µ, can be embedded inside Ob<:µ. We therefore consider Ob<:µ as our final
pure object calculus.

Trivially, we can also obtain covariant product types, since these can be represented in terms of
universal quantifiers and variant function types in F<:. A direct encoding is possible as well:

A ×̇ B @ Ô(X<:A) Ô(Y<:B) [fst:X, snd:Y]

We obtain A ×̇B <: A’ ×̇B’ if A <: A’ and B <: B’. In [8] it is shown that covariant record types Üli:Ai
iÏ1..ná can be represented in F<:, using covariant product types. Hence, they are also available in Ob<:.

June 9, 1995 6:25 PM Page 9

3.3 An Encoding of Variant Object Types

Generalizing the ideas of section 3.2, we can obtain an encoding of variant object types. Through
this encoding, we can make covariant any component whose method is only invoked (like val), and
contravariant any component whose method is only overridden (like arg).

The idea for obtaining covariance is exactly the one used for the λ-calculus. Basically, we rewrite
an object type [m:B, ...] as Ô(Y<:B) [m:Y, ...]. The former is invariant in B, while the latter is covariant
in B. The existential quantifier still allows the invocation of m, but blocks overrides of m from the out-
side, since the quantifier hides the representation type Y. Given an object o of type [m:B, ...] whose
method m is never overridden from the outside, we define o’ @ (pack Y<:B=B, o : [m:Y,...]) of type
Ô(Y<:B) [m:Y, ...]. We can simulate any use of o with a corresponding use of o’, in particular by writ-
ing (open o’ as Y<:B, x : [m:Y, ...] in x.m : B) instead of o.m.

The idea for obtaining contravariance is more complicated. (The technique used for the λ-calculus
does not seem to generalize.) Given an object o of type A @ [m:B, ...] whose method m is never in-
voked from the outside, we may transform o slightly and give it a type contravariant in B; the trans-
formation will consist in hiding m and in exhibiting a new method min that will update m internally. As
a first step, we define the type A’ @ µ(X) Ô(Y<:(X→B)→X) [min:Y, m:B, ...], where min is a new
method name. Note that A’ is still invariant in B. We simulate an override to the method m of o by
writing the invocation o.min(λ(s:A’)b’) instead of o.mfiüς(s:A)b, where b’ imitates b. Our intent is that
an invocation of min with argument λ(s:A’)b’ will override m internally; therefore, the code for a typi-
cal object o’ of type A’ will be:

in([min = ς(s:UA’) λ(f: A’→B) in(s.m fiü ς(s:UA’) f(in(s))), m = ς(s:UA’) s.m, ...]): A’

where UA’ @ [min:(A’→B)→A’, m:B, ...], and for any a:UA’

in(a): A’ @ fold(A’, pack Y<:(A’→B)→A’=(A’→B)→A’, a : [min:Y, m:B, ...])

Finally we use subsumption to forget the m component, so that o’ has the type:

µ(X) Ô(Y<:(X→B)→X) [min:Y, ...]

which is contravariant in B. The method m of o’ cannot be invoked from the outside since it is not even
visible.

These techniques for obtaining covariance and contravariance are not fully satisfactory. For ex-
ample, after making two components covariant, we are no longer able to reorder them, since Ô(X<:A)
Ô(Y<:B) C and Ô(Y<:B) Ô(X<:A) C are not equivalent types. Therefore, we do not describe formal en-
codings of variant object types. Still, these techniques are suggestive, and useful in examples and in
other encodings.

3.4 The Self Quantifier

Within the second-order ς-calculus with bounded quantifiers and recursion, Ob<:µ, we can encode
an interesting construction that we call the Self quantifier. The Self quantifier is a combination of re-
cursion and bounded existentials, with recursion going “through the bound”:

ς(X)B @ µ(Y)Ô(X<:Y)B (Y not occurring in B)

In general, any type B{A} can be transformed into a type Ô(Y<:A)B{Y} covariant in A. (Recall
from section 3.1, however, that these types are not always isomorphic.) An analogous technique applies
to recursive types, and motivates our definition of the Self quantifier. Given an equation X = B{X}, we
transform it into X = Ô(Y<:X)B{Y}. The solution to this equation, namely ς(X)B{X}, satisfies the
subtyping property:

Page 10 June 9, 1995 6:25 PM

if B{X}<:B’{X} then ς(X)B{X} <: ς(X)B’{X},

even though we may not have µ(X)B{X} <: µ(X)B’{X}.
Modulo an unfolding, ς(X)B is the same as Ô(X<:ς(X)B)B. Hence, by analogy with the standard

interpretation of existential types, ς(X)B{X} can be understood informally as the type of pairs 〈C, c〉
consisting of a subtype C of ς(X)B{X} and an element c of B{C}.

For example, suppose that we have an element x of type ς(X)X. Then, choosing ς(X)X as the re-
quired subtype of ς(X)X, we obtain 〈ς(X)X, x〉 : ς(X)X. Therefore we can construct:

µ(x) 〈ς(X)X, x〉 : ς(X)X

Less trivially, and still informally, suppose that we want to define a type M of memory cells, and
to build a memory cell m:M with a read operation rd:Nat and a write operation wr:Nat→M. We can
define:

M @ ς(X)[rd:Nat, wr:Nat→X]

where the wr method should use its argument to override the rd field. For convenience, we adopt the
following abbreviation to unfold a Self quantifier:

AÑCÖ @ B{C} whenever A 7 ς(X)B{X} and C<:A

So, for example, MÑMÖ7[rd:Nat, wr:Nat→M].
To define a memory cell, we are going to use twice the fact that if x:MÑMÖ, then 〈M, x〉:M. First,

we need a method body for wr that, with self s:MÑMÖ and argument n:Nat, produces a result of type M.
Since s.rd:=n has the same type as s, namely MÑMÖ, we can use 〈M, s.rd:=n〉:M as the body of the wr
method. Therefore, we have:

m: M @ 〈M, [rd = 0, wr = ς(s:MÑMÖ) λ(n:Nat) 〈M, s.rd:=n〉]〉

Building on these intuitions, we now study the abstract properties of the Self quantifier. The two
basic operations for ς are similar to the ones for existentials. One operation constructs an element of
ς(X)B, given a subtype of ς(X)B and an appropriate value; it is the composition of pack for existen-
tials and fold for recursive types. The other operation inspects an element of ς(X)B (as much as possi-
ble) and computes with its contents; it is the composition of unfold for recursive types and open for
existentials.

The operation for constructing elements of type ς(X)B, in full generality, binds a type variable.
Hence, we need a more complex syntax than the pairing 〈-,-〉 used above. We reuse the symbol ς for
this second-order construct, in the same way we use λ for both first-order and second-order binders.
We refine the notation 〈C,b〉 to ς(Y<:A=C)b. The term ς(Y<:A=C)b binds C to Y in b, and requires C
to be a subtype of A. Within b, the types Y and C are equivalent. The type of the whole term is A.

We define, for A7ς(X)B{X}, C<:A, and b{C}:B{C}:

ς(Y<:A=C) b{Y} @

fold(A, (pack Y<:A=C, b{Y}:B{Y}))

and, for c:A and d{Y,y}:D, where Y does not occur in D:

(use c as Y<:A, y:B{Y} in d{Y,y}:D) @

(open unfold(c) as Y<:A, y:B{Y} in d{Y,y}:D)

The following rules for the Self quantifier can be derived from the rules for µ and Ô.

June 9, 1995 6:25 PM Page 11

∆ς

(Type Self) (Sub Self)

E, X<:Top ∫ B E, X<:Top ∫ B <: B’
————— ———–————

E ∫ ς(X)B E ∫ ς(X)B <: ς(X)B’

(Val Self) (where A7ς(X)B{X})

E ∫ C <: A E ∫ b{C} : B{C}
———————————

E ∫ ς(Y<:A=C)b{Y} : A

(Val Use) (where A7ς(X)B{X})

E ∫ c : A E ∫ D E, Y<:A, y:B{Y} ∫ d : D
————————————————

E ∫ (use c as Y<:A, y:B{Y} in d:D) : D

∆=ς

(Eq Self) (where A7ς(X)B{X}, A’7ς(X)B’{X})

E ∫ C <: A’ E ∫ A E, X<:Top ∫ B’{X} <: B{X} E ∫ b{C} ↔ b’{C} : B’{C}
—————————————–———–————————————

E ∫ ς(Y<:A=C)b{Y} ↔ ς(Y<:A’=C)b’{Y} : A

(Eq Use) (where A7ς(X)B{X})

E ∫ c ↔ c’ : A E ∫ D E, Y<:A, y:B{Y} ∫ d ↔ d’ : D
——————————————————————————

E ∫ (use c as Y<:A, y:B{Y} in d:D) ↔ (use c’ as Y<:A, y:B{Y} in d’:D) : D

(Eval Unself) (where A7ς(X)B{X}, c7ς(Z<:A=C)b{Z})

E ∫ c : A E ∫ D E ,Y<:A, y:B{Y} ∫ d{Y,y} : D
—————————————————————

E ∫ (use c as Y<:A,y:B{Y} in d{Y,y}:D) ↔ d{C,b{C}} : D

(Eval Reself) (where A7ς(X)B{X})

E ∫ b : A E, y:A ∫ d{y} : D
——————————————————————

E ∫ (use b as Y<:A,y:B{Y} in d{ς(Y’<:A=Y)y} :D) ↔ d{b} : D

Notation We write:
¢ ς〈A,c〉 for ς(X<:A=A)c when X does not occur in c
¢ ς(X=A)c{X} for ς(X<:A=A)c{X}

These rules are roughly analogous to corresponding rules for existential types and for recursive
types. The rules in ∆ς serve for proving subtypings between types of the form ς(X)B, and for typing
terms with the constructs ς and use. The rules in ∆=ς include two congruence rules ((Eq Self) and (Eq
Use)) and two evaluation rules ((Eval Unself) and (Eval Reself)) for the constructs ς and use.

Note in particular the expected rule of covariance, (Sub Self). This rule holds because existential
types are covariant in their bounds, and because recursion in µ(Y)Ô(X<:Y)B{X} involves only a single
covariant position. It can be verified as follows:

Page 12 June 9, 1995 6:25 PM

E,X<:Top ∫ B <: B’

⇒ E,Z<:Top,Y<:Z,X<:Y ∫ B <: B’ by standard weakening lemmas, for fresh Y,Z

⇒ E,Z<:Top,Y<:Z ∫ Ô(X<:Y)B <: Ô(X<:Z)B’ by (Sub Exists)

⇒ E ∫ µ(Y)Ô(X<:Y)B <: µ(Z)Ô(X<:Z)B’ by (Sub Rec)

The memory cell definition can now be understood formally, with the ς〈M,...〉 notation replacing
the informal notation 〈M,...〉:

M @ ς(Self)[rd:Nat, wr:Nat→Self]

m: M @ ς(Self=M)[rd = 0, wr = ς(s:MÑSelfÖ) λ(n:Nat) ς〈Self, s.rd:=n〉]

Later examples frequently adopt this choice of Self as a bound variable.

3.5 A Pure Second-Order Object Calculus

We conclude this section by considering a pure second-order object calculus, ςOb, based exclu-
sively on object types and the Self quantifier (see appendix E):

ςOb @@@@ ∆x ∪ ∆Ob ∪ ∆<: ∪ ∆<:X ∪ ∆<:Ob ∪ ∆ς

This calculus departs from second-order λ-calculi by omitting function types and the standard quanti-
fiers. It seems that, in ςOb, the only function types that can be encoded are invariant, and that the stan-
dard second-order quantifiers are not expressible. Still, as the next section demonstrates, the Self quan-
tifier provides an essential second-order feature of object calculi, namely the type Self, with a form of
type recursion. Interestingly, then, ςOb is a small second-order object calculus that covers a spectrum
of object-oriented notions.

4. Object Types with Self
The payoff of the Self quantifier comes when it is used in conjunction with object types. Object

types with Self are obtained by the combination of the simple object types of section 2.2 with the Self
quantifier of section 3.4. These new types allow subsumption between objects containing methods that
return self.

In this section, we first derive the rules for the combination of objects with Self. We then show
how these derived rules can easily provide typings for some interesting examples. We work entirely
within Ob<:µ, that is, within the second-order calculus with bounded quantifiers, recursion, and simple
object types.

4.1 ς-Objects

In this section we examine types of the form:

ς(X)[li:Bi{X} iÏ1..n] where X occurs only covariantly in each Bi{X}

We call these structures ς-object types, and ς-objects their corresponding values. The parameter X in
ς(X)[li:Bi{X} iÏ1..n] is intended as the Self type. Note that we do not require that [li:Bi{X} iÏ1..n] be co-
variant in X, only that each Bi{X} be covariant in X.

Although ς-object types are obtained by applying a Self quantifier (which has no covariance re-
strictions) to an object type, for the most part we consider ς(X)[li:Bi{X} iÏ1..n] as a single type con-
struction. The covariance requirement is necessary when selecting components of ς-objects. For em-

June 9, 1995 6:25 PM Page 13

phasis, we use a special syntax for the combination of Self quantifiers, object types, and the covariance
requirement:

ς(X+)[li:Bi{X} iÏ1..n] @ ς(X)[li:Bi{X} iÏ1..n] when X occurs only covariantly in each Bi{X}

The covariance requirement implies that Xi must not occur within any object type within Bi, since
object types are invariant in their components. For example, ς(X)[l: ς(Y)[m:X, n:Y]] violates the co-
variance requirement. Hence, informally, we may say that Self types do not nest: there is a single
meaningful Self type within each pair of object brackets.

It is often useful to consider an unfolding AÑCÖ of a ς-object type A:

AÑCÖ @ [li:Bi{C} iÏ1..n] whenever A 7 ς(X+)[li:Bi{X} iÏ1..n] and C<:A

We frequently consider AÑXÖ, for a variable X, and the self-unfolding AÑAÖ of A. (When building an
element of type A it is common to build first an element of type AÑAÖ.) We say that a type C<:A and an
element of AÑCÖ constitute an implementation of A, since they can be used to build an element of A.
Then C is the representation type for the implementation.

The operations on ς-objects are defined as follows. Assume that a has type A with A7
ς(X+)[li:Bi{X} iÏ1..n] and AÑXÖ7[li:Bi{X} iÏ1..n], and set, with some overloading of notation:

a.lj @

(use a as Z<:A, y:AÑZÖ in y.lj : Bi{A})

a.ljfiüς(Y<:A, y:AÑYÖ, x:AÑYÖ)b{Y,y,x} @

(use a as Z<:A, y:AÑZÖ in ς(Y<:A=Z) (y.ljfiüς(x:AÑYÖ)b{Y,y,x}) : A)

The ς-object selection operation reduces fairly simply to a regular selection operation on the un-
derlying object.

The ς-object override operation is more interesting, although similarly it reduces to an override
operation on the underlying object. The overriding method b can take advantage of three variables: (1)
Y<:A, the unknown subtype of A that was used to construct a; (2) y:AÑYÖ, the raw object inside a,
which can be thought of as the old self; y is the value of self at the time the overriding takes place,
containing the old version of method lj; (3) x:AÑYÖ, the regular self of the overriding method b. From
these variables, b must produce a result of type Bj{Y}, parametrically in Y.

Combining the rules for objects and for Self quantification with the definitions above, we derive
the following rules. (The complete set is given in appendix B.)

(Type ςObject) (Sub ςObject) (li distinct)

E, X<:Top ∫ Bi{X+} ÓiÏ1..n E ,X<:Top ∫ Bi{X+} ÓiÏ1..n+m
——————————— —————————————————

E ∫ ς(X+)[li:Bi{X} iÏ1..n] E ∫ ς(X+)[li:Bi{X} iÏ1..n+m] <: ς(X+)[li:Bi{X} iÏ1..n]

(Val ςObject) (where A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ C<:A E ∫ b{C} : AÑCÖ
——————————

E ∫ ς(Y<:A=C) b{Y} : A

(Val ςSelect) (where A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ a : A jÏ1..n
———–———

E ∫ a.lj : Bj{A}

Page 14 June 9, 1995 6:25 PM

(Val ςOverride) (where A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ a : A E, Y<:A, y:AÑYÖ, x:AÑYÖ ∫ b : Bj{Y+} jÏ1..n
————————————————————

E ∫ a.ljfiüς(Y<:A, y:AÑYÖ, x:AÑYÖ)b : A

(Eq ςObject) (where A7ς(X+)[li:Bi{X} iÏ1..n], A’7ς(X+)[li:Bi{X} iÏ1..n+m])

E ∫ C<:A’ E ∫ b{C} ↔ b’{C} : A’ÑCÖ
—————–———————————

E ∫ ς(Y<:A=C)b{Y} ↔ ς(Y<:A’=C)b’{Y} : A

(Eq Sub ςObject) (where A7ς(X+)[li:Bi{X} iÏ1..n], A’7ς(X+)[li:Bi{X} iÏ1..n+m])

E ∫ C<:A’ E, xi:AÑCÖ ∫ bi{C} : Bi{C} ÓiÏ1..n E, xj:A’ÑCÖ ∫ bj{C} : Bj{C} ÓjÏn+1..n+m
————————————–——–————————————————

E ∫ ς(Y<:A=C)[li=ς(xi:AÑYÖ)bi{Y} iÏ1..n] ↔ ς(Y<:A’=C)[li=ς(xi:A’ÑYÖ)bi{Y} iÏ1..n+m] : A

(Eval ςSelect) (where A7ς(X+)[li:Bi{X} iÏ1..n], c7ς(Z<:A=C)a{Z})

E ∫ c : A jÏ1..n
—————————

E ∫ c.lj ↔ a{C}.lj : Bj{A}

(Eval ςOverride) (where A7ς(X+)[li:Bi{X} iÏ1..n], c7ς(Z<:A=C)a{Z})

E ∫ c : A E, Y<:A, y:AÑYÖ, x:AÑYÖ ∫ b{Y,y,x} : Bj{Y+} jÏ1..n
———————————————————–———————–————

E ∫ c.ljfiüς(Y<:A,y:AÑYÖ,x:AÑYÖ)b{Y,y,x} ↔ ς(Z<:A=C) a{Z}.ljfiüς(x:AÑZÖ)b{Z,a{Z},x} : A

The most remarkable fact is that the (Sub ςObject) rule holds for ς-object types. We recall that in
section 2.5 we found that the analogous rule for recursive object types did not hold.

The (Val ςObject) rule can be used to build a ς-object ς(Y<:A=C)b{Y} from a subtype C of the
desired ς-object type A, and from a regular object b{C}. The Y variable in b{Y} is the Self type, in
case the methods of b need to refer to it.

It is easy to define ς-objects. When building a ς-object by (Val ςObject), its methods are not re-
quired to operate on an arbitrary self: they just need to match the given representation type of the object
being constructed. That is, to construct a ς-object of type A7ς(X+)[li:Bi{X} iÏ1..n] we need only a set of
methods bj:Bj{C} for some C<:A (not bj:Bj{X} for an arbitrary X<:A). We often let C equal A, and we
seldom let C equal a type variable. Moreover, each of these methods can assume the existence a self
parameter xj:[li:Bi{C} iÏ1..n]. (See the rules (Val ςObject) and (Val Object).) We rarely need to work
parametrically with an arbitrary X<:A. However, the flexibility of using an arbitrary subtype of A is
critical in the derivation of (Val ςOverride). In section 5.1 we will see that this flexibility has a price.

The (Eq Sub ςObject) rule is of limited power because the same C appears on both sides of the
conclusion. We can trace back this limitation to a similar one in the rules for existentials, which was
discussed in section 3.1.

We now verify some of these rules in detail.

¢ (Val ςSelect) (where A7ς(X+)[li:Bi{X} iÏ1..n])
The derivation relies on covariance of Bi in X, and subsumption.

E, Y<:A, y:AÑYÖ ∫ y.lj : Bj{Y} by (Val Select)

E, Y<:A, y:AÑYÖ ∫ Bj{Y} <: Bj{A} since Y<:A and Bj{Y} is covariant in Y

E, Y<:A, y:AÑYÖ ∫ y.lj : Bj{A} by (Val Subsumption)

E ∫ (use a as Y<:A, y:AÑYÖ in y.lj :Bj{A}) : Bj{A} by (Val Use) since E ∫ a:A

June 9, 1995 6:25 PM Page 15

¢ (Val ςOverride) (where A7ς(X+)[li:Bi{X} iÏ1..n])
The derivation relies on the full power of (Val Self). Note that y:AÑYÖ does not imply y:AÑAÖ, even
though Y<:A. Otherwise b would only need to have type Bi{A}, and this would permit unsound
overrides.

E, Y<:A, y:AÑYÖ, x:AÑYÖ ∫ b{Y,y,x} : Bj{Y+} by assumption

E, Y<:A, y:AÑYÖ ∫ y.ljfiüς(x:AÑYÖ)b{Y,y,x} : AÑYÖ by (Val Override)

E, Y<:A, y:AÑYÖ ∫ ς(Z<:A=Y) y.ljfiüς(x:AÑZÖ)b{Z,y,x} : A by (Val Self)

E ∫ (use a as Y<:A, y:AÑYÖ in ς(Z<:A=Y) y.ljfiüς(x:AÑZÖ)b{Z,y,x} :A) : A by (Val Use)

¢ (Eval ςSelect) (where A7ς(X+)[li:Bi{X} iÏ1..n], c7ς(Z<:A=C)a{Z})

E, Y<:A, y:AÑYÖ ∫ y.lj : Bj{A} as for (Val ςSelect)

E ∫ (use a as Y<:A, y:AÑYÖ in y.lj:Bj{A}) ↔ a{C}.lj : Bj{A} by (Eval Unself)

¢ (Eval ςOverride) (where A7ς(X+)[li:Bi{X} iÏ1..n], c7ς(Z<:A=C)a{Z})

E, Y<:A, y:AÑYÖ ∫ ς(Z<:A=Y) y.ljfiüς(x:AÑZÖ)b{Z,y,x} : A as for (Val ςOverride)

E ∫ (use c as Y<:A, y:AÑYÖ in ς(Z<:A=Y) y.ljfiüς(x:AÑZÖ)b{Z,y,x}:A)

 ↔ ς(Z<:A=C) a{C}.ljfiüς(x:AÑZÖ)b{Z,a{C},x} by (Eval Unself)

↔ ς(Z<:A=C) a{Z}.ljfiüς(x:AÑZÖ)b{Z,a{Z},x} : A by (Eq Self)

4.2 Examples

We are now ready to examine some object-oriented examples (cf. [2]). We find that these exam-
ples can be typed rather easily when seen in terms of ς-objects, even when a method needs to return or
to modify self. The main benefit of using ς-object types, rather than recursive types, is that we obtain
useful subtypings from the rule (Sub ςObject).

4.2.1 Movable Points

This is a modified version of the problematic example of section 2.5, obtained by replacing µ with
ς. We define the types of one-dimensional and two-dimensional movable points:

P1 @ ς(Self+)[x:Int, mv_x:Int→Self]

P2 @ ς(Self+)[x,y:Int, mv_x,mv_y:Int→Self]

We have the desirable property P2 <: P1, by (Sub ςObject).
Next we define the one-dimensional origin point, where Self is P1. Recall that ς〈A,c〉 abbreviates

ς(X<:A=A)c for an unused X.

origin1 : P1 @ ς(Self=P1)[x=0, mv_x=ς(s:P1ÑSelfÖ)λ(dx:Int)ς〈Self, s.x:=s.x+dx〉]

The typing origin1:P1 can be derived as follows, with P1ÑP1Ö7[x:Int, mv_x:Int→P1] as the chosen rep-
resentation type for P1:

s:P1ÑP1Ö, dx:Int ∫ s.x:=s.x+dx : P1ÑP1Ö by (Val Select), (Val Override)

s:P1ÑP1Ö, dx:Int ∫ ς〈P1, s.x:=s.x+dx〉: P1 by (Val ςObject)

s:P1ÑP1Ö ∫ λ(dx:Int)ς〈P1, s.x:=s.x+dx〉: Int→P1 by (Val Fun)

∫ [x=0, mv_x=ς(s:P1ÑP1Ö)λ(dx:Int)ς〈P1, s.x:=s.x+dx〉] : P1ÑP1Ö by (Val Object)

∫ ς(Self=P1)[x=0, mv_x=ς(s:P1ÑSelfÖ)λ(dx:Int)ς〈Self, s.x:=s.x+dx〉] : P1 by (Val ςObject)

Page 16 June 9, 1995 6:25 PM

The rule (Val ςSelect) allows us to invoke methods whose type involves Self:

origin1.mv_x : Int→P1

Moreover, the equational theory allows us to derive expected equivalencies, such as:

origin1.mv_x(1)

↔ ς(Self=P1)[x=1, mv_x=ς(s:P1ÑSelfÖ)λ(dx:Int)ς〈Self, s.x:=s.x+dx〉] : P1

that is, the unit point equals the result of moving the origin point. In light of these properties, we con-
sider that this treatment of movable points is satisfactory.

We take advantage of this example to comment on the so-called binary methods, as an aside. In
object-oriented programming, binary methods have proven generally problematic [7]. As we will see,
we do not have much to contribute on this subject. A typical example of a binary method is an equality
method in a point object:

P1eq @ ς(Self)[x:Int, mv_x:Int→Self, eq:Self→Bool]

origin1eq @ ς(Self=P1eq)[x=0, mv_x=..., eq = ς(s:P1eqÑSelfÖ) λ(p:Self) s.x =Int p.x]

Binary methods violate the covariance requirement of ς-object types. We shall temporarily ignore this
requirement, which is just a convention. We use the rules for the ς quantifier, which do not depend on
covariance, instead of the derived rules for ς-objects.

We discover that binary methods cannot be invoked effectively because of typing restrictions. Ex-
panding the encoding of method invocation, we may try to pull out the eq method from a ς-object p of
type P1eq:

use p as Self<:P1eq, z:[x:Int, mv_x:Int→Self, eq:Self→Bool] in z.eq (not typable)

The rule (Val Use) requires that z.eq be given a type independent of Self. This is not possible because
Self is in contravariant position in Self→Bool. Although we cannot pull out the eq method from p, we
can still apply it within the scope of the use construct, if we can find an adequate argument. One possi-
bility is:

use p as Self<:P1eq, z:[x:Int, mv_x:Int→Self, eq:Self→Bool] in z.eq(z.mv_x(1)) : Bool

which compares p with its translation by 1, returning false. However, most advantageous uses of eq
would involve comparisons with independently obtained points, and these comparisons are not possi-
ble. This situation arises, essentially, because independent instances of the same existential type do not
intermix.

In order to avoid the contravariant occurrence of Self, we may define:

P1eq_co @ ς(Self+)[x:Int, mv_x:Int→Self, eq:P1→Bool]

origin1eq_co @ ς(Self=P1eq_co)[x=0, mv_x=..., eq = ς(s:P1eq_coÑSelfÖ) λ(p:P1) s.x =Int p.x]

These definitions are more useful than the previous ones. In particular, origin1eq_co.eq(p) is well typed
whenever p has type P1. However, eq is no longer a binary method, since its argument does not have
the same type as self.

4.2.2 Object-Oriented Natural Numbers

The type of Scott numerals [24] has an object-oriented counterpart:

NOb @ ς(Self+)[succ:Self, case:Ó(Z<:Top)Z→(Self→Z)→Z]

June 9, 1995 6:25 PM Page 17

This type is well-formed because Ó(Z<:Top)Z→(X→Z)→Z is covariant in X.
Informally, an object of type NOb represents a number. The succ method of a number returns its

successor. Given a type Z, a value z of type Z, and a function f from NOb to Z, the case method returns
z if the number is 0, and f(n) if the number is n+1.

The zero numeral can be defined as:

zeroOb : NOb @

 ς(Self=NOb)

 [case = λ(Z<:Top) λ(z:Z) λ(f:Self→Z) z,

 succ = ς(n:NObÑSelfÖ) ς〈Self, n.case := λ(Z<:Top) λ(z:Z) λ(f:Self→Z) f(ς〈Self,n〉)〉]

The other numerals can be obtained from zeroOb by invoking succ repeatedly. Some familiar operations
are expressible:

succ : NOb→NOb @ λ(n:NOb) n.succ

pred : NOb→NOb @ λ(n:NOb) n.case(NOb)(zeroOb)(λ(p:NOb)p)

iszero : NOb→Bool @ λ(n:NOb) n.case(Bool)(true)(λ(p:NOb)false)

4.2.3 A Calculator

Our final example is that of a calculator object. We exploit the ability to override methods to
record the pending arithmetic operation. When an operation add or sub is entered, the equals method is
overridden with code for addition or subtraction. The first two components (arg, acc) are needed for the
internal operation of the calculator, while the other four (enter, add, sub, equals) provide the user inter-
face.

C = ς(Self+)[arg,acc: Real, enter: Real→Self, add,sub: Self, equals: Real]

By subsumption, the calculator also has type:

Calc = ς(Self+)[enter: Real→Self, add,sub: Self, equals: Real]

This shorter type is the one shown to users of the calculator, and is a supertype of C. We define the cal-
culator as follows:

calculator: Calc @

 ς(Self=C)

 [arg = 0.0,

 acc = 0.0,

 enter = ς(s:CÑSelfÖ) λ(n:Real) ς〈Self, s.arg := n〉 ,
 add = ς(s:CÑSelfÖ) ς〈Self, (s.acc := s.equals).equals fiü ς(s’:CÑSelfÖ) s’.acc+s’.arg〉 ,
 sub = ς(s:CÑSelfÖ) ς〈Self, (s.acc := s.equals).equals fiü ς(s’:CÑSelfÖ) s’.acc-s’.arg〉 ,
 equals = ς(s:CÑSelfÖ) s.arg]

This definition is meant to provide the following behavior:

calculator .enter(5.0) .equals = 5.0

calculator .enter(5.0) .sub .enter(3.5) .equals = 1.5

calculator .enter(5.0) .add .add .equals = 15.0

Page 18 June 9, 1995 6:25 PM

A scientific calculator can also be defined, with additional state and operations. Its inner design
could be quite different from that of our basic calculator, but the scientific calculator’s type may still be
a subtype of Calc.

5. Overriding and Self
In this section we discuss attempts to override methods that return self. If we want to override a

method of a ς-object of type A, the new method must work for any possible subtype of A. This is be-
cause the ς-object might have been constructed as an element of an unknown proper subtype of A. If
the new method returns self, it is critical that the type of its result be the unknown subtype of A, be-
cause one of the other methods may be invoked on the result. We say that the overriding method must
be “parametric in self ”; this turns out to be a difficult criterion to meet.

It should not be too surprising that it is hard to override methods that return self. After all, the
technique for obtaining ς-object subtypings is based on that of section 3.3 for obtaining covariant ob-
ject components, which cannot be usefully overridden.

5.1 Overriding from the Outside

In section 4.1 we explain that it is easy to create a ς-object, because its initial methods needs to
work only for the actual type of the object being constructed. In particular, methods that override self
present no difficulties. However, if we want to override a method of an existing ς-object o:A, the new
method must work for any possible B<:A, because o might have been built as an element of B. We do
not know either the “true type” of o, or the “true type” of the self parameters of its methods. When
overriding a method of o, the overriding method can assume only that the object has been constructed
from an unknown Self<:A. The same difficulty would likely surface at object-creation time, if we were
creating objects incrementally, adding methods to an empty object, instead of creating full objects at
once.

This is where we need the complex derived rule for overriding ς-objects, (Val ςOverride). Con-
sider, for example, the type:

Q @ ς(Self+)[n,f:Int, m:Self] with QÑXÖ 7 [n,f:Int, m:X]

An overriding method for o7ς(Y<:Q=C)b{Y} can use in its body the variables Self<:Q, x’:QÑSelfÖ,
and x:QÑSelfÖ, where x’ is in fact b{C}, according to (Eval ςOverride), and x is the self of the new
method. We can therefore override the f method of Q with any of the following method bodies:

o.f fiü ς(Self<:Q, x’:QÑSelfÖ, x:QÑSelfÖ) (any of the following:)

x’.n + 1 setting o.f to produce b.n + 1 (constantly)

x.n + 1 setting o.f to produce 1 + the value of n when f is invoked

Let us now attempt to override the m method. The typing rule (Val ςOverride) requires that, from the
variables Self<:Q, x’:QÑSelfÖ, x:QÑSelfÖ at its disposal, the overriding method must produce a value of
type Self. Here are some possibilities:

o.m fiü ς(Self<:Q, x’:QÑSelfÖ, x:QÑSelfÖ) (any of the following:)

x’.m setting o.m to produce the current b.m (constantly)

x.m setting o.m to diverge

However, we cannot override o.m with anything useful. Note, first, that we cannot synthesize a value
of type Self from scratch. Second, we cannot return x’ or x, nor ς〈Q,x’〉 or ς〈Q,x〉, because none of

June 9, 1995 6:25 PM Page 19

these can be given type Self. Third, any update to x’, x, ς〈Q,x’〉, or ς〈Q,x〉 will preserve their original
type, so we cannot return the updated terms either. Finally, ς〈Self,x〉:Self is not derivable, for an un-
known Self<:Q.

Moreover, it would be unsound to ignore these typing problems and return, say, ς〈Self,x〉 or
ς〈Self,x’〉. The reason can be seen in the following example, which builds a ς-object r2 from a proper
subtype R1 of its own type R2:

R2 @ ς(Self+)[p:Self, q:Int]

R1 <: R2 @ ς(Self+)[p:Self, q:Int, t:Int]

r1 : R1 @ ς(Y<:R1=R1)[p=ς(s:R1ÑYÖ))ς〈Y,s〉, q=0, t=0]

r2 : R2 @ ς(Y<:R2=R1)[p=r1, q=ς(s:R2ÑYÖ)s.p.t]

r2.p fiü ς(Self<:R2, x’:R2ÑSelfÖ, x:R2ÑSelfÖ) ς〈Self,x〉
= ς(Y<:R2=R1)[p=ς(x:R2ÑYÖ)ς〈Y,x〉 , q=ς(s:R2ÑYÖ) s.p.t] (unsound)

r2.p fiü ς(Self<:A, x’:AÑSelfÖ, x:AÑSelfÖ) ς〈Self,x’〉
= ς(Y<:R2=R1)[p=ς(x:AÑYÖ)r2, q=ς(s:R2ÑYÖ) s.p.t] (unsound)

Unsound behavior can be observed by invoking q after either of the two updates above, because the
field t is missing from s.p.

The reason for this unsound behavior can be traced back to the rule for constructing ς-objects. Be-
cause of the flexibility we have in constructing ς-objects out of proper subtypes of themselves, the x
and x’ parameters at our disposal when overriding may be shorter than the subtype used originally
when constructing the object. For example, r2 is constructed with a component p that is longer than the
body of r2, to which x or x’ would be bound. Therefore, returning x or x’ would not be safe, because
they would be too short.

In conclusion, we discover that the (Val ςOverride) rule, although very powerful for overriding
simple methods and fields, is not sufficient to allow us to override methods that return a value of type
Self. One solution to this problem is discussed in the next section.

5.2 Recoup

In this section we introduce a special method called recoup with an associated run-time invariant.
Recoup is a method that returns self immediately. The invariant asserts that the result of recoup is its
host object.

Let us redefine the type Q of section 5.1, by adding a method called recoup:

Q @ ς(Self+)[recoup: Self, n,f:Int, m:Self]

We can build an element of Q as follows:

o : Q @ ς(Self=Q) b, where b 7 [recoup=ς(s:QÑSelfÖ)ς〈Self,s〉, n=..., f=..., m=...]

Then, we can typecheck:

o.m fiü ς(Self<:Q, s’:QÑSelfÖ, s:QÑSelfÖ) s’.recoup : Q

since s’.recoup has type Self. Moreover, the behavior obtained could be useful, and corresponds to
storing the current object into the new object (like a “backup” operation).

We say that a method of the form ς(s:BÑSelfÖ)ς〈Self,s〉 , in the context of a ς-object of the form
ς(Self<:B=B)[...], is a recoup method. Intuitively, recoup allows us to recover a “parametric self ”

Page 20 June 9, 1995 6:25 PM

s’.recoup, which equals o but has type Self<:Q and not just type Q. This technique is particularly useful
after an override on a value of type Self<:Q, because the result of the override only has type Q.

In general, if B has the form ς(Self+)[recoup:Self, ...] then we can write useful polymorphic func-
tions of type Ó(Self<:B) BÑSelfÖ→Self that are not available without recoup, such as:

g : Ó(Self<:Q) QÑSelfÖ→Self @

λ(Self<:Q) λ(s:QÑSelfÖ) (s.m:=s.recoup).recoup

Such a function is sufficiently parametric to be used in overrides from the outside, as in:

o.m fiü ς(Self<:Q, s’:QÑSelfÖ, s:QÑSelfÖ) g(Self)(s)

More generally, if Q’ is a subtype of Q and o’ has type Q’, we can write:

o’.m fiü ς(Self<:Q’, s’:Q’ÑSelfÖ, s:Q’ÑSelfÖ) g(Self)(s)

Thus, the function g, which may have been written with the type Q in mind, can be used for subtypes
of Q. This is an instance of code reuse, in line with traditional object-oriented programming: the func-
tion that implements a method for a type can be reused (inherited) for implementing a method for a
subtype.

The technique just described gives the correct result only as long as recoup is bound to
ς(s:QÑSelfÖ)ς〈Self,s〉. Otherwise, the operational behavior is not the expected one. The correctness of
typing, on the other hand, does not depend on the recoup invariant.

An invariant of this kind is, we believe, perfectly acceptable for a programming language: recoup
would be a distinguished component that is appropriately initialized and that cannot be overridden.
Even without language support, we may be disciplined enough to preserve the recoup invariant, and
thus we may solve the problem of overriding methods with result type Self.

6. Related Work
We finish with some comparisons with the most closely related work [6, 17], also discussed in [2].

We have fixed-size objects, and support subsumption by using a single subtyping relation. Mitchell et
al. do not support subsumption but allow object extension; Bruce formalizes two distinct subtyping re-
lations. Like Mitchell et al. and unlike Bruce, we do not distinguish between objects and object genera-
tors, and we allow the overriding of proper methods in objects. Many common examples can be ex-
pressed in all these systems.

Mitchell et al. and Bruce present systems with primitive objects and with a built-in Self type. In
contrast we have a full second-order system where Self is obtained by an encoding. The rules for Self
are similar in all these systems. The rules are always complex, but ours are derivable from those for el-
ementary objects without Self. Hence, we may claim some success in explaining Self.

Acknowledgments
John Lamping prompted us to think about encoding covariant components. Gordon Plotkin sug-

gested we should have a system with the Self quantifier as the only second-order construct.

June 9, 1995 6:25 PM Page 21

Appendix
The following appendices list our rules. Appendices A, C, and D contain primitive rules, while ap-

pendices B and E contain derived rules. Appendix A contains rules for first-order objects; appendix C
contains other typing fragments, and appendix D contains the corresponding equational fragments. Ap-
pendix B concerns ς-objects ; appendix E concerns the Self quantifier ς.

Appendix A: Simple-Objects Fragments
These are the typing and equational rules for simple objects.

∆Ob

(Type Object) (li distinct)

E ∫ Bi ÓiÏ1..n
——————

E ∫ [li:Bi iÏ1..n]

(Val Object) (where A7[li:Bi iÏ1..n])

E, xi:A ∫ bi : Bi ÓiÏ1..n
—————————

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Override) (where A7[li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n] jÏ1..n E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

∆<:Ob

(Sub Object) (li distinct)

E ∫ Bi ÓiÏ1..n+m
——————————

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

∆=Ob

(Eq Object) (where A7[li:Bi iÏ1..n])

E, xi:A ∫ bi ↔ bi’ : Bi ÓiÏ1..n
————————————————

E ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A)bi’ iÏ1..n] : A

(Eq Select) (Eq Override) (where A7[li:Bi iÏ1..n])

E ∫ a ↔ a’ : [li:Bi iÏ1..n] jÏ1..n E ∫ a ↔ a’ : A E, x:A ∫ b ↔ b’ : Bj jÏ1..n
——————————— ————————————————

E ∫ a.lj ↔ a’.lj : Bj E ∫ a.ljfiüς(x:A)b ↔ a’.ljfiüς(x:A)b’ : A

(Eval Select) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A jÏ1..n
—————————

E ∫ a.lj ↔ bj{xj←a} : Bj

Page 22 June 9, 1995 6:25 PM

(Eval Override) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
—————————————————————

E ∫ a.ljfiüς(x:A)b ↔ [lj=ς(x:A’)b, li=ς(xi:A’)bi iÏ(1..n+m)-{j}] : A

∆=<:Ob

(Eq Sub Object) (where A7[li:Bi iÏ1..n], A’7[li:Bi iÏ1..n+m])

E, xi:A ∫ bi : Bi ÓiÏ1..n E, xj:A’ ∫ bj : Bj ÓjÏn+1..n+m
——————–——————————————

E ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A’)bi iÏ1..n+m] : A

June 9, 1995 6:25 PM Page 23

Appendix B: ς-Objects Fragments (Derived Rules)

These are derived rules for the combination of simple objects and the Self quantifier.

∆ς+

(Type ςObject) (Sub ςObject) (li distinct)

E, X<:Top ∫ Bi{X+} ÓiÏ1..n E, X<:Top ∫ Bi{X+} ÓiÏ1..n+m
——————————— —————————————————

E ∫ ς(X+)[li:Bi{X} iÏ1..n] E ∫ ς(X+)[li:Bi{X} iÏ1..n+m] <: ς(X+)[li:Bi{X} iÏ1..n]

(Val ςObject) (where A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ C<:A E ∫ b{C} : AÑCÖ
——————————

E ∫ ς(Y<:A=C) b{Y} : A

(Val ςSelect) (where A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ a : A jÏ1..n
———–———

E ∫ a.lj : Bj{A}

(Val ςOverride) (where A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ a : A E, Y<:A, y:AÑYÖ, x:AÑYÖ ∫ b : Bj{Y+} jÏ1..n
—————————–———————————

E ∫ a.ljfiüς(Y<:A, y:AÑYÖ, x:AÑYÖ)b : A

∆=ς+

(Eq ςObject) (where A7ς(X+)[li:Bi{X} iÏ1..n], A’7ς(X+)[li:Bi{X} iÏ1..n+m])

E ∫ C<:A’ E ∫ b{C} ↔ b’{C} : A’ÑCÖ
—————–———————————

E ∫ ς(Y<:A=C)b{Y} ↔ ς(Y<:A’=C)b’{Y} : A

(Eq Sub ςObject) (where A7ς(X+)[li:Bi{X} iÏ1..n], A’7ς(X+)[li:Bi{X} iÏ1..n+m])

E ∫ C<:A’ E, xi:AÑCÖ ∫ bi{C} : Bi{C} ÓiÏ1..n E, xj:A’ÑCÖ ∫ bj{C} : Bj{C} ÓjÏn+1..n+m
————————————–—————–—————————————

E ∫ ς(Y<:A=C)[li=ς(xi:AÑYÖ)bi{Y} iÏ1..n] ↔ ς(Y<:A’=C)[li=ς(xi:A’ÑYÖ)bi{Y} iÏ1..n+m] : A

(Eq ςSelect) (where A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ a ↔ a’ : A jÏ1..n
————————

E ∫ a.lj ↔ a’.lj : Bj{A}

(Eq ςOverride) (where A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ a ↔ a’ : A E, Y<:A, y:AÑYÖ, x:AÑYÖ ∫ b ↔ b’ : Bj{Y+} jÏ1..n
——————————————————————————

E ∫ a.ljfiüς(Y<:A, y:AÑYÖ, x:AÑYÖ)b ↔ a’.ljfiüς(Y<:A, y:AÑYÖ, x:AÑYÖ)b’ : A

(Eval ςSelect) (where A7ς(X+)[li:Bi{X} iÏ1..n], c7ς(Z<:A=C)a{Z})

E ∫ c : A jÏ1..n
—————————

E ∫ c.lj ↔ a{C}.lj : Bj{A}

Page 24 June 9, 1995 6:25 PM

(Eval ςOverride) (where A7ς(X+)[li:Bi{X} iÏ1..n], c7ς(Z<:A=C)a{Z})

E ∫ c : A E, Y<:A, y:AÑYÖ, x:AÑYÖ ∫ b{Y,y,x} : Bj{Y+} jÏ1..n
————————————————–———–———————————

E ∫ c.ljfiüς(Y<:A,y:AÑYÖ,x:AÑYÖ)b{Y,y,x} ↔ ς(Z<:A=C) a{Z}.ljfiüς(x:AÑZÖ)b{Z,a{Z},x} : A

June 9, 1995 6:25 PM Page 25

Appendix C: Other Typing Fragments
These are typing rules for standard constructs such as function types and recursive types.

∆x

(Env ) (Env x) (Val x)

E ∫ A xÌdom(E) E’, x:A, E” ∫ Q
—— ——————— ———–——

 ∫ Q E, x:A ∫ Q E’, x:A, E” ∫ x:A

∆K

(Type Const)

E ∫ Q
——

E ∫ K

∆→

(Type Arrow) (Val Fun) (Val Appl)

E ∫ A E ∫ B E, x:A ∫ b : B E ∫ b : A→B E ∫ a : A
——–——— ——————— —————————

E ∫ A→B E ∫ λ(x:A)b : A→B E ∫ b(a) : B

∆<:

(Sub Refl) (Sub Trans) (Val Subsumption)

E ∫ A E ∫ A <: B E ∫ B <: C E ∫ a : A E ∫ A <: B
———— ————————— ————————

E ∫ A <: A E ∫ A <: C E ∫ a : B

(Type Top) (Sub Top)

E ∫ Q E ∫ A
——— —————

E ∫ Top E ∫ A <: Top

∆<:→

(Sub Arrow)

E ∫ A’ <: A E ∫ B <: B’
—————————

E ∫ A→B <: A’→B’

∆<:X

(Env X<:) (Type X<:) (Sub X)

E ∫ A XÌdom(E) E’, X<:A, E” ∫ Q E’, X<:A, E” ∫ Q
——————— —————— ———————

E, X<:A ∫ Q E’, X<:A, E” ∫ X E’, X<:A, E” ∫ X<:A

Page 26 June 9, 1995 6:25 PM

∆<:µ

(Type Rec<:) (Sub Rec)

E, X<:Top ∫ A E ∫ µ(X)A E ∫ µ(Y)B E ,Y<:Top, X<:Y ∫ A<:B
————— —————————–—————————

E ∫ µ(X)A E ∫ µ(X)A <: µ(Y)B

(Val Fold) (Val Unfold)

E ∫ a : A{X←µ(X)A} E ∫ a : µ(X)A
———–—————— ———————————

E ∫ fold(µ(X)A, a) : µ(X)A E ∫ unfold(a) : A{X←µ(X)A}A

∆<:ÓÓÓÓ

(Type All<:) (Sub All)

E, X<:A ∫ B E ∫ A’ <: A E, X<:A’ ∫ B <: B’
————— ————————————

E ∫ Ó(X<:A)B E ∫ Ó(X<:A)B <: Ó(X<:A’)B’

(Val Fun2<:) (Val Appl2<:)

E, X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ A’<:A
————————— ————————————

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : B{A’}

∆<:ÔÔÔÔ

(Type Exists<:) (Sub Exists)

E, X<:A ∫ B E ∫ A <: A’ E, X<:A ∫ B <: B’
————— ———————————

E ∫ Ô(X<:A)B E ∫ Ô(X<:A)B <: Ô(X<:A’)B’

(Val Pack<:)

E ∫ C <: A E ∫ b{C} : B{C}
——————————–——————

E ∫ (pack X<:A=C, b{X}:B{X}) : Ô(X<:A)B{X}

(Val Open<:)

E ∫ c : Ô(X<:A)B E ∫ D E, X<:A, x:B ∫ d : D
————————–—————————

E ∫ (open c as X<:A,x:B in d:D) : D

June 9, 1995 6:25 PM Page 27

Appendix D: Other Equational Fragments
These are equational rules for standard constructs; corresponding to the rules of appendix C.

∆=

(Eq Symm) (Eq Trans)

E ∫ a ↔ b : A E ∫ a ↔ b : A E ∫ b ↔ c : A
————— ———————————

E ∫ b ↔ a : A E ∫ a ↔ c : A

∆=x

(Eq x)

E’, x:A, E” ∫ Q
————–———

E’, x:A, E” ∫ x↔x : A

∆=→

(Eq Fun) (Eq Appl)

E, x:A ∫ b ↔ b’ : B E ∫ b ↔ b’ : A→B E ∫ a ↔ a’ : A
——————————— ——————–——————

E ∫ λ(x:A)b ↔ λ(x:A)b’ : A→B E ∫ b(a) ↔ b’(a’) : B

(Eval Beta) (Eval Eta)

E ∫ λ(x:A)b : A→B E ∫ a : A E ∫ b : A→B xÌdom(E)
————————–——— —––————————

E ∫ (λ(x:A)b)(a) ↔ b{x←a} : B E ∫ λ(x:A)b(x) ↔ b : A→B

∆=<:

(Eq Subsumption) (Eq Top)

E ∫ a ↔ a’ : A E ∫ A <: B E ∫ a:A E ∫ b:B
—————————— ———————

E ∫ a ↔ a’ : B E ∫ a ↔ b : Top

∆=<:µ

(Eq Fold) (Eq Unfold)

E ∫ a ↔ a’ : A{X←µ(X)A} E ∫ a ↔ a’ : µ(X)A
———————–———————— ———————————————

E ∫ fold(µ(X)A, a) ↔ fold(µ(X)A, a’) : µ(X)A E ∫ unfold(a) ↔ unfold(a’): A{X←µ(X)A}

(Eval Fold) (Eval Unfold)

E ∫ a : µ(X)A E ∫ a : A{X←µ(X)A}
——————–——————— ————————————————

E ∫ fold(µ(X)A,unfold(a)) ↔ a : µ(X)A E ∫ unfold(fold(µ(X)A,a)) ↔ a : A{X←µ(X)A}

Page 28 June 9, 1995 6:25 PM

∆=<:ÓÓÓÓ

(Eq Fun2<:) (Eq Appl2<:)

E, X<:A ∫ b ↔ b’ : B E ∫ b ↔ b’ : Ó(X<:A)B{X} E ∫ A’<:A
——————–———————— —————–—————————

E ∫ λ(X<:A)b ↔ λ(X<:A)b’ : Ó(X<:A)B E ∫ b(A’) ↔ b’(A’) : B{A’}

(Eval Beta2<:) (Eval Eta2<:)

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ C <: A E ∫ b : Ó(X<:A)B XÌdom(E)
—————————–—————— ——————–——————

E ∫ (λ(X<:A)b)(C) ↔ b{X←C} : B{X←C} E ∫ λ(X<:A)b(X) ↔ b : Ó(X<:A)B

∆=<:ÔÔÔÔ

(Eq Pack<:)

E ∫ C <: A’ E ∫ A’<:A E, X<:A’ ∫ B’{X}<:B{X} E ∫ b{C} ↔ b’{C} : B’{C}
———————————–——————————————————

E ∫ (pack X<:A=C, b{X}:B{X}) ↔ (pack X<:A’=C, b’{X}:B’{X}) : Ô(X<:A)B{X}

(Eq Open<:)

E ∫ c ↔ c’ : Ô(X<:A)B E ∫ D E, X<:A, x:B ∫ d ↔ d’ : D
————————————————————————

E ∫ (open c as X<:A,x:B in d:D) ↔ (open c’ as X<:A,x:B in d’:D) : D

(Eval Unpack<:) (where c7pack X<:A=C, b{X}:B{X})

E ∫ c : Ô(X<:A)B{X} E ∫ D E, X<:A, x:B{X} ∫ d{X,x} : D
—————————–————————————

E ∫ (open c as X<:A,x:B{X} in d{X,x}:D) ↔ d{C,b{C}} : D

(Eval Repack<:)

E ∫ b : Ô(X<:A)B{X} E, y:Ô(X<:A)B{X} ∫ d{y} : D
——————————————————————————

E ∫ (open b as X<:A,x:B{X} in d{pack X’<:A=X, x:B{X’}}:D) ↔ d{b} : D

June 9, 1995 6:25 PM Page 29

Appendix E: The ςOb Calculus

ςOb is our minimal second-order object calculus. It is obtained by combining the rules for object
types (appendix A) with the Self quantifier (section 3.4) taken as a primitive, plus some general rules
(appendix C and D). The rules for ς-objects (appendix B) are derivable from the ones shown here.

A,B ::= X | Top | [li:Bi iÏ1..n] | ς(X)B

a,b ::= x | [li=ς(xi:A)bi iÏ1..n] | a.l | a.lfiüς(x:A)b | ς(X<:A=B)b | use a as X<:A, y:B in b:D

(Env ) (Env x) (Env X<:)

E ∫ A xÌdom(E) E ∫ A XÌdom(E)
—— ——————— ———————

 ∫ Q E, x:A ∫ Q E, X<:A ∫ Q

(Type X<:) (Type Top) (Type Object) (li distinct) (Type Self)

E’, X<:A, E” ∫ Q E ∫ Q E ∫ Bi ÓiÏ1..n E, X<:Top ∫ X
—————— ——— —————— —————

E’, X<:A, E” ∫ X E ∫ Top E ∫ [li:Bi iÏ1..n] E ∫ ς(X)B

(Sub Refl) (Sub Trans) (Sub X)

E ∫ A E ∫ A <: B E ∫ B <: C E’, X<:A, E” ∫ Q
———— ————————— ———————

E ∫ A <: A E ∫ A <: C E’, X<:A, E” ∫ X<:A

(Sub Top) (Sub Object) (li distinct) (Sub Self)

E ∫ A E ∫ Bi ÓiÏ1..n+m E, X<:Top ∫ B <: B’
————— —————————— ————————

E ∫ A <: Top E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n] E ∫ ς(X)B <: ς(X)B’

(Val Subsumption) (Val x) (Val Object) (where A7[li:Bi iÏ1..n])

E ∫ a : A E ∫ A <: B E’, x:A, E” ∫ Q E, xi:A ∫ bi : Bi ÓiÏ1..n
———————— ———––—— —————————

E ∫ a : B E’, x:A, E” ∫ x:A E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Override) (where A7[li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n] jÏ1..n E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

(Val Self) (where A7ς(X)B{X}) (Val Use) (where A7ς(X)B{X})

E ∫ C <: A E ∫ b{C} : B{C} E ∫ c : A E ∫ D E, Y<:A, y:B{Y} ∫ d : D
——————————— ————————————————

E ∫ ς(Y<:A=C) b{Y} : A E ∫ (use c as Y<:A, y:B{Y} in d:D) : D

Page 30 June 9, 1995 6:25 PM

(Eq Symm) (Eq Trans)

E ∫ a ↔ b : A E ∫ a ↔ b : A E ∫ b ↔ c : A
————— ———————————

E ∫ b ↔ a : A E ∫ a ↔ c : A

(Eq Subsumption) (Eq x) (Eq Top)

E ∫ a ↔ a’ : A E ∫ A <: B E’, x:A, E” ∫ Q E ∫ a:A E ∫ b:B
—————————— ———––———— ———————

E ∫ a ↔ a’ : B E’, x:A, E” ∫ x ↔ x : A E ∫ a ↔ b : Top

(Eq Object) (where A7[li:Bi iÏ1..n])

E, xi:A ∫ bi ↔ bi’ : Bi ÓiÏ1..n
—————————–———————

E ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A)bi’ iÏ1..n] : A

(Eq Sub Object) (where A7[li:Bi iÏ1..n], A’7[li:Bi iÏ1..n+m])

E, xi:A ∫ bi : Bi ÓiÏ1..n E, xj:A’ ∫ bj : Bj ÓjÏn+1..n+m
———–—————————————————

E ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A’)bi iÏ1..n+m] : A

(Eq Select) (Eq Override) (where A7[li:Bi iÏ1..n])

E ∫ a ↔ a’ : [li:Bi iÏ1..n] jÏ1..n E ∫ a ↔ a’ : A E, x:A ∫ b ↔ b’ : Bj jÏ1..n
——————————— ————————————————

E ∫ a.lj ↔ a’.lj : Bj E ∫ a.ljfiüς(x:A)b ↔ a’.ljfiüς(x:A)b’ : A

(Eq Self) (where A7ς(X)B{X}, A’7ς(X)B’{X})

E ∫ C <: A’ E, X<:Top ∫ B’{X} <: B{X} E ∫ b{C} ↔ b’{C} : B’{C}
——————————————————————————

E ∫ ς(Y<:A=C)b{Y} ↔ ς(Y<:A’=C)b’{Y} : A

(Eq Use) (where A7ς(X)B{X})

E ∫ c ↔ c’ : A E ∫ D E, Y<:A, y:B{Y} ∫ d ↔ d’ : D
——————————————————————————

E ∫ (use c as Y<:A, y:B{Y} in d:D) ↔ (use c’ as Y<:A, y:B{Y} in d’:D) : D

(Eval Select) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A jÏ1..n
—————————

E ∫ a.lj ↔ bj{xj←a} : Bj

(Eval Override) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
—————————————————————

E ∫ a.ljfiüς(x:A)b ↔ [lj=ς(x:A’)b, li=ς(xi:A’)bi iÏ(1..n+m)-{j}] : A

(Eval Unself) (where A7ς(X)B{X}, c7ς(Z<:A=C)b{Z})

E ∫ c : A E ∫ D E, Y<:A, y:B{Y} ∫ d{Y,y} : D
—————————————————————

E ∫ (use c as Y<:A,y:B{Y} in d{Y,y}:D) ↔ d{C,b{C}} : D

June 9, 1995 6:25 PM Page 31

(Eval Reself) (where A7ς(X)B{X})

E ∫ b : A E, y:A ∫ d{y} : D
——————————————————————

E ∫ (use b as Y<:A,y:B{Y} in d{ς(Y’<:A=Y)y} :A) ↔ d{b} : D

Page 32 June 9, 1995 6:25 PM

References

[1] Abadi, M. and L. Cardelli, A semantics of object types. Proc. IEEE Symposium on Logic in
Computer Science, 332-341. 1994.

[2] Abadi, M. and L. Cardelli, A theory of primitive objects: untyped and first-order systems.
Proc. Theoretical Aspects of Computer Software. Springer-Verlag. 1994.

[3] Abadi, M. and L. Cardelli, An imperative object calculus. Proc. TAPSOFT’95, 471-485.
Springer-Verlag. 1995.

[4] Abadi, M. and L. Cardelli, On subtyping and matching. Proc. ECOOP’95 (to appear).
Springer-Verlag. 1995.

[5] Böhm, C. and A. Berarducci, Automatic synthesis of typed λ-programs on term algebras.
Theoretical Computer Science 39, 135-154. 1985.

[6] Bruce, K.B., A paradigmatic object-oriented programming language: design, static typing
and semantics. Journal of Functional Programming 4(2), 127-206. 1994.

[7] Bruce, K.B., L. Cardelli, G. Castagna, The Hopkins Objects Group, G.T. Leavens, and B. Pierce,
On binary methods. TR95-08. Department of Computer Science, Iowa State University. 1995.

[8] Cardelli, L., Extensible records in a pure calculus of subtyping. In Theoretical Aspects of Ob-
ject-Oriented Programming, C.A. Gunter and J.C. Mitchell, ed. MIT Press. 373-425. 1994.

[9] Cardelli, L., J.C. Mitchell, S. Martini, and A. Scedrov, An extension of system F with subtyp-
ing. Proc. Theoretical Aspects of Computer Software, 750-770. Lecture Notes in Computer Sci-
ence 526. Springer-Verlag. 1991.

[10] Cardelli, L. and P. Wegner, On understanding types, data abstraction and polymorphism.
Computing Surveys 17(4), 471-522. 1985.

[11] Curien, P.-L. and G. Ghelli, Coherence of subsumption, minimum typing and type-checking
in F≤. Mathematical Structures in Computer Science 2(1), 55-91. 1992.

[12] Dahl, O. and K. Nygaard, Simula, an Algol-based simulation language. Communications of the
ACM 9, 671-678. 1966.

[13] Fisher, K. and J.C. Mitchell, Notes on typed object-oriented programming. Proc. Theoretical
Aspects of Computer Software, 844-885. Springer-Verlag. 1994.

[14] Girard, J.-Y., Interprétation fonctionelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. Thèse de doctorat d’état, University of Paris. 1972.

[15] Girard, J.-Y., Y. Lafont, and P. Taylor, Proofs and types. Cambridge University Press. 1989.

[16] Meyer, B., Object-oriented software construction. Prentice Hall. 1988.

[17] Mitchell, J.C., F. Honsell, and K. Fisher, A lambda calculus of objects and method specializa-
tion. Proc. 8th Annual IEEE Symposium on Logic in Computer Science. 1993.

[18] Mitchell, J.C. and G.D. Plotkin, Abstract types have existential type. Proc. 12th Annual ACM
Symposium on Principles of Programming Languages. 1985.

[19] Nelson, G., ed. Systems programming with Modula-3. Prentice Hall. 1991.

June 9, 1995 6:25 PM Page 33

[20] Palsberg, J., Efficient inference for object types. Proc. 9th Annual IEEE Symposium on Logic
in Computer Science, 186-195. 1994.

[21] Plotkin, G.D., M. Abadi, and L. Cardelli, Subtyping and parametricity. Proc. IEEE Symposium
on Logic in Computer Science, 310-319. To appear. 1994.

[22] Reynolds, J.C., Towards a theory of type structure. Proc. Colloquium sur la programmation,
408-423. Lecture Notes in Computer Science 19. Springer-Verlag. 1974.

[23] Szypersky, C., S. Omohundro, and S. Murer, Engineering a programming language: the type
and class system of Sather. TR-93-064. ICSI, Berkeley. 1993.

[24] Wadsworth, C., Some unusual λ-calculus numeral systems. In To H.B. Curry: Essays on com-
binatory logic, lambda calculus and formalism, J.P. Seldin and J.R. Hindley, ed. Academic
Press. 1980.

