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1. Introduction

This paper is pragmatic in nature and describes some techniques and
heuristics used in a prototype typechecker for dependent types and subtypes.
These are to be used in the implementation of a language based on such features.
Some care has been taken in formalizing the type system, but not yet in
formalizing the algorithms involved.

In this paper we adopt the Type:Type rule (i.e. Type has type Type) [Cardelli
86]. This rule leads to undecidable type systems, but since we deal with
undecidability anyway (because of recursive types) the presence or absence of
this rule is a minor point in our discussion of typechecking algorithms. On the
other hand, the presence of this rule simplifies the presentation of the type
system.

Eventually, we want to disallow the Type:Type rule and obtain a stratified
type system, maybe along the lines of [Martin-L6f 86]. Here we present the
unstratified type system, which has some intrinsic interest.

2. Dependent types
Our basic language has universal and existential quantifiers [Martin-Lof 73],
and the type of all types. Here is the syntax of expressions, where x and y are

(distinct) identifiers, and a, b, A, and B are expressions:
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X identifiers

Type the type of all types

All(x: A) B dependent function types
fun(x: A) b (dependent) functions
a(b) function application
Some(x: A) B dependent pair types
pair(x: A=a) b:B (dependent) pairs
bindx,y=ainb pair inspection

The scoping rules (i.e. the definitions of free and bound variables) are as
follows. The binding occurrences of x in All, fun, Some and pair bind the
occurrences of X in B and b, but not in A and a. The binding occurrences of x and
y in bind bind the occurrences of x and y in b, but not in a. Then, a-conversion
(i.e. renaming of bound variables) and substitution (b{x<—a} means substituting a
for all the free occurrences of x in b) are defined as usual. Terms are identified up
to a-conversion.

Computation rules are given by the following conversion rules (the necessary
type assumptions have been omitted, for brevity), together with the rules needed

to make conversion into a congruence relation.

B (fun(x:A) b)(a) < b{x«a}

n fun(x:A)b(x) < b

6 bind x,y = (pair(z: A=a)b:B)inc < c{x«al{y«b{z«<a}}
n pair(z: A= (bind x,y =cinx)) (bindx,y'=ciny):B < c

where X is not a free variable of b in 1, and z is not a free variable of ¢ in 7.
The type rules are given in the form of a type inference system. One
conversion rule accounts for computation during typechecking (following the

notation in [Harper 87], S is a signature providing types for constants; E is an
environment associating types to variables; I, E env means that E is well formed;

E I, a:A means that we can deduce that a has type A in the signature S and

environment E):

Conversion Er a:A EF B:Type AoB

ElgaB
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The basic typing rules follow the syntactic structure:

Assumption FsEenv  x:AeE
E bk x:A
Type Formation ks Eenv

E, Type : Type

All Formation EF,A:Type E, xtA bk B:Type

E ' All(x:A) B: Type

All Introduction Et;A:Type E,x:AF;b:B

EF fun(x:A) b : All(x:A) B

All Elimination EFja:A ER b: All(x:A) B

E - b(a): B{x<a}

Some Formation Ek,A:Type E,x:Al,B:Type

E -, Some(x:A) B : Type

Some Introduction El;a:A  E kg b{x<a}:B{x<a}

E b pair(x:A=a) b:B : Some(x:A) B

Some Elimination EF c:Some(x:A) B Ex:A,y:B bk, d:C{zepair(x:A=x)y:B}

EF;bind x,y=cind : C{z«c}
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3. Typechecking dependent types

The above inference system can be used as the basis for a typechecking
algorithm. This particular type system turns out to be undecidable, because of
the Type:Type rule. This means that the typechecking process might diverge.
However, examples leading to divergence are extremely hard to reproduce
(being based on Girard's paradox [Girard 71]), and do not have any impact on
programming practice.

A typechecking algorithm computes a type for a term e given an environment
E defining the type of all the free variables in the term. In the above type system,
typechecking is fairly straightforward since the terms are rich in type
information. We can distinguish three activities in typechecking: inference,
matching and reduction, which are intertwined.

An inference step consists in selecting a type rule which conforms to the
structure of the term, checking that the assumptions of that rule are verified, and
constructing the type of the term, as prescribed by the rule.

In checking that the assumptions are verified, we may have to match two
types, when a type rule has two occurrences of the same meta-variable. In order
to match two types, we reduce them both to normal form (if possible) and
compare the results up to a-conversion. The matching routine is also responsible
for n-expansions and n-expansions, when needed.

Reductions to normal form are performed as prescribed by the conversion
rules, but since the conversion rules are typed, the reduction process may require
further inference and matching. The reduction step might fail to terminate
because the existence of normal forms is not guaranteed.

This completes our sketch of the basic typechecking algorithm.

4. Redundant type parameters

Our expressions contain much redundant type information. From a
pragmatic point of view, some of this redundancy is welcomed. For example, it is
good documentation practice to express the type of all the parameters and results
of a function, even when some of this information can be inferred.

However, some type information seems just to make programs more
cumbersome and harder to read, especially in languages with explicit
polymorphism [Reynolds 85] where one must provide type parameters to
polymorphic functions in order to instantiate them to the desired type.

Some languages (noticeably ML [Milner 84]) have attempted to provide the
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largest possible amount of type inference, through implicit polymorphic typing:
type quantifiers are always assumed to operated at the top level, and are not
allowed in the syntax. This approach, although appealing and largely successful,
has some difficulties. First, it may encourage cryptic programming styles, when
too much type information is omitted. Second, it has problems in dealing with
side effects which are ultimately due to the fact the untyped polymorphic
programs are ambiguous with respect to their possible explicit typings
(regarding the position of type quantifiers in such typings). Finally, some
programs can be typed with explicit typing which are not typeable with implicit
typing, namely the ones requiring type quantifiers nested within other type
operators.

We are now going to describe a compromise between implicit and explicit
typing. We adopt an explicit polymorphism framework, and we require all
function parameters to be typed (in a language implementation of these ideas we
would also require function results to be typed). However, we then allow one to
omit applications of type parameters, when such omitted parameters are
followed by other parameters which determine them uniquely. The missing
information is then recovered using unification techniques, similar to the ones in
the ML typechecker [Milner 78].

(One of the major problems of the unstratified system, from a pragmatic point
of view, is that it is not possible to decide whether a given subexpression is a
type, in the following sense. Let f be fun(A:Type) fun(a:A) a; it would appear that
a does not have type Type, and in the application f(Int)(3), a is in fact bound to a
non-type. But in the application f(Type)(Int), a is bound to a type. The following
discussion applies strictly to a stratified systems, and only heuristically to
unstratified systems.)

Suppose we have a term:
f o All(A: Type) All (a: A) A
Then, whenever we apply f to an argument a, we first have to supply the type A
of a. Such a type parameter is redundant as it could be easily deduce from the

type of g, i.e. we want to write:

f(a) (instead of f(A)(a))
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The general situation looks as follows. Given a term f whose type has the form:
.All(A: Type) ... All(a: B(A)) C, and given an application of f of the form
f...(X)...(x)..., where X:Type corresponds to A, and x:B(X) corresponds to a, then
the parameter X may be redundant (note that X is not redundant in f...(X)).

Type parameters can only be omitted when their omission does not create
ambiguities as to which parameters are missing. Since typechecking normally
proceeds left-to-right, we only allow the omission of the final part of a sequence
of type parameters. In a term of the form f...(X1)...(Xp)(X)... , where X{...Xp have

type Type while x does not have type Type, only subsequences of the form
(Xj)...(Xp) can be omitted.

Example: consider the following (schematic) definitions:

T = All(A: Type) All(a: B(A)) C(A)(a)
where B(X) # Type for any X

f: T =fun(A: Type) fun(a: B(A)) c

f(b) where b:B(D)

When examining f(b) from left to right, first f is assigned the type T. Then a type
parameter is expected; b is typechecked but it has type B(D) # Type, hence there
is a missing type parameter, and f is assigned the type All(a: B(a)) C(a)(a), where
o (a new type variable) replaces the missing type parameter. Then a parameter of
type B(a) is expected, and one of type B(D) was found. To make sure they are
compatible, they are (simplified and) matched by simple unification (first-order
unification is sufficient as o:Type cannot appear in function position). In this case
the unification succeeds with oo = D, hence D was the missing type parameter,
and the type of f(b) is C(D)(b).

If a missing type parameter remains undetermined, a free type variable may
appear in the final type of the expression. This can be interpreted as an error
condition, or it can be interpreted as a yet-undetermined situation which may

become fully determined later on.

5. Recursion

Recursion is one of the features we have to add to our language to make it
more like a programming languages. This is both for expressive power (the
language without Type:Type and without recursion can only express total

functions, although a surprising variety of them), and for programming
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convenience (it is easier to program recursively than iteratively). We add

expressions of the form:
rec(x: A) b recursion
which allow the definition of recursive values (typically functions) and recursive
types (when A is Type). The conversion rule is (again, omitting the type
assumptions):
L rec(x:A)a = af{x< rec(x:A) a}

The only type rule we need for recursion is:

Rec Ek;A:Type E, xtAkgja:A

Ek rec(x:A)a: A

The introduction of recursion causes the type system to become undecidable,
even if we omit the Type:Type rule. Unlike Type:Type undecidability, rec
undecidability is pervasive. This is very disconcerting since one of the most
intuitive properties of ordinary compilers is termination. Hence, we have to
improve our typechecker to take divergence into account and to try and avoid it
when possible.

Since a rec term reduces to a term containing a copy of itself, reduction of
terms containing rec never produces normal forms. This means that (according
to an obvious extension of our old algorithm based on inference, matching and
reduction) all the typechecking involving recursive types will diverge.

It turns out that virtually all recursive type declarations which occur in
practical programs are regular (i.e. the infinite expansion of such recursively
defined types have a finite number of distinct subtrees). It is then natural to build
a simple loop recognizer into the typechecking algorithm, which causes
termination when analyzing regular recursion. (One could even try to impose
syntactic restrictions which enforce regular type definitions, but we fear that this
might be too restrictive. Much of the appeal of dependent type systems is in the
ability to perform non-trivial computations on types, even if such computations

always produce regular types.)
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First we have to abandon the idea of reducing type terms to normal form
during matching, because this will diverge too often. Instead, we adopt a more
"incremental" approach interleaving reduction to head normal form with
matching of the heads. This will still diverge in exactly the same situations, but
now we can introduce new techniques.

The most straightforward technique consists in maintaining a pair of stacks
(called the left and right stack) during typechecking. Matching now takes a left
term and a right term, and handles recursion so that subterms of left terms
always appear as left terms, and similarly for right terms.

First, we regard rec terms as terms in head normal form, so that the reduction
process will not try to expand them. Whenever we have to match a (e.g. left) rec
term against another (e.g. right) term, we search the left and right stacks,
respectively, for occurrences of such terms at the same depth (using a pointer
equality test). If found, the matching succeeds. Otherwise, the terms are pushed
onto the left and right stacks respectively, the rec term is expanded, and the
matching continues. Symmetrically for a right rec term.

This simple scheme seems to be extremely well behaved in programming
situations. The cases in which it fails are (1) matching types which are
intrinsically non-regular (they virtually never arise), and (2) matching recursive
regular types which are expressed in non-straightforward ways.

Here is an example of the second class: consider the following two definitions
of recursive parametric lists (using records and variants, discussed in the next

section):

List1 = fun(A:Type) rec(B:Type) [nil: {}, cons: {head: A, tail: B}]

List2 = rec(B:Type—Type) fun(A:Type) [nil: {}, cons: {head: A, tail: B(A)}]

It is not clear whether List1 and List2 should be considered the same type, but
assume we expect them to match. Matching List1 against itself, or List2 against
itself succeeds, because of pointer equality tests at the beginning of matching.
Matching List1 against a copy of itself, succeeds, because the same subterms are
encountered after unrolling (according to the stack technique). Matching List2
against a copy of itself diverges, because the unrolling of the recursion creates
new terms (because of the application B(A)) and simple pointer equality fails;
replacing pointer equality by more sophisticated tests might still succeed here,
and slow down typechecking considerably. Finally, successfully matching List1
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against List2 seems very hard, because the recursions are out of step and this
causes divergency in the algorithm.

6. Records and Variants

Records (labeled, unordered cartesian products) and variants (labeled,
unordered disjoint sums) are now introduced. They are useful on their own
right, but they are introduced here mostly because they are the basic types on
which subtyping is built.

We add expressions of the form (where t are labels):

{t1:A1, ..., tnh:An} record types
{t1=a1, ..., th=an} records

a.t selection
[t1:A1, ..., th:An] variant types
[t=a] variants
case z=c giving B | t{(x1:A1)b1 ... | th(Xn:An)bn case

where all the tj appearing in a record type, record, variant type or case are
distinct. These expressions are identified up to reordering of record fields, record
type components, case branches and variant type components.

The case expression above discriminates over the ¢ term, a variant whose tag
tj determines the branch bj to be executed, and whose contents are bound to xj in

that branch. The scoping of z is restricted to B, which is the result type.
Here are the typing rules for the above constructs.

Record Formation Ebs A Type .. EFgA :Type

Ebg{t A .. t:A }: Type

Record Introduction Etgar A, .. Ebga:A
Ebgft=a ...t =a }:{t:A ..t:A}
Record Elimination Ebgr:{tA ..t A} iel.n
Ebgrt: A



Variant Formation Ebs A Type ... EF A :Type

Ebg[t:A, .. t:A ]: Type

Variant Introduction Efga: A iel.n

Ebg[t=a]:[t;A ..t A ]

Variant Elimination EF A Type Ek A Type

Ex;A ;b Blze[t=x]} .. Ex_:A ;b B{z[t =x]}

E I case z=c giving B | t,(x;:A))b, ... | t (X :A )b, : B{z«c}
7. Subtypes
Subtypes are introduced by the Power operator: if B is a type, then Power(B)

is intended to be the type of all subtypes of B. Hence, if A:Power(B) then A is a
subtype of B; this is also written A ¢ B.

A c B abbreviates A:Power(B)

Power Formation E g A:Type

E g Power(A) : Type

Power Introduction E kg A:Type
EFgAcA
Power Elimination Etlga:A EFgACB
Etga:B

In addition to the formation, introduction and elimination rules, Power has
rules relating it to each of the other type operators. Each of these additional rules
determines the meaning of subtyping for that type operator.
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Power Type

Power All

Power Some

Power Record

Power Variant

Power Power

The [Power Type] and [Power Power] rules only apply to the unstratified system.
The [Power Record] rule captures the essence of multiple inheritance; a record type
(called a class in object oriented programming) is a subtype (subclass) of another
record type if it has more components (properties), and if the common
components are in subtype relation. The [Power All] rule (which generalizes the
controvariant rule of ordinary function spaces with respect to inclusion) extends

multiple inheritance from object types to higher-order types , and effectively

E kg A:Type

E g Power(A) c Type

EbgA'cA  ExA'lgBcB

E g All(x:A) B c All(x:A") B!

EbgAcA' ExAbgBcB

E g Some(x:A) B ¢ Some(x:A'") B'

EbgA cB, .. EFgA cB ... EFgA :Type

Ebgft A .. t:A ..t A }c{t:B ..t :B}

m 1771 " n

EFgA cB ... EFgA cB ... EFgB_:Type

Ebg[t A, . t:AJc[t:B ..t:B ..t B ]

m

EbgAcB

E kg Power(A) < Power(B)

integrates object oriented programming with functional programming.

8. Typechecking subtypes

Subtyping introduces a number of ambiguities in the type system; at the
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moment we have heuristic solutions which appear to work well in practice. The
worse kind of ambiguities are only present in the unstratified system.

One basic ambiguity regards the type of a type. If A is a type, should its type
be Type or Power(A) (according to [Power Introduction])? If the algorithm gives
one of the two by default, it should always be ready to change its interpretation
when needed. For example, in determining the type of fun(B:Type) fun(AcB)
fun(a:A) a, one of the steps requires A:Type, but the environment provides
A:Power(B). One solution is to replace tests of the kind type(A)=Type normally
used during typechecking by tests of the kind fype(A)cType, since Type cType,
and Power(A) cType if A:Type.

Another ambiguity comes from transitivity of inclusion (the transitivity of c
is a derived rule in the unstratified system). In testing A c B in situations where
A c A, one option is to test A' — B.

A final ambiguity comes up in trying to determine whether Power(A)
Power(B) (terms like Power(Power(B)) are only allowed in the unstratified
version of the system). One can either use [Power Power] and attempt to
determine A < B, or use [Power Introduction] and attempt to determine
Power(A) = B, or use transitivity of c and attempt to determine Power(A) c B. It
is however safe to assume that situations of the kind Power(Power(B)) do not
happen in practice.

When these ambiguities are resolved, another basic problem appears. So far
we have expressed the typing and subtyping rules separately, but for
typechecking purposes it is necessary to merge the typing and subtyping rules
for the same type constructor into a single rule (or set of rules), so that the
typechecker knows what to do for each constructor.

The basic technique for merging type rules with subtyping rules consists in
relaxing all the assumptions of a given typing rule by [Power Elimination] and
(using the subtyping rules) see what derived rule one obtains. For example, for

[All Elimination] and [Record Elimination] one obtains the derived rules:

All Elimination' EFja:A' EFSA'cA ER b: All(x:A) B

E - b(a): B{x«<a}

Record Elimination' Er;1:B Ek Bc{t:A}

Eb rt: A
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As these derived rules show, in typechecking the system with subtypes the
matching routine must sometimes be used along with an an inclusion routine. The
latter is very similar in structure to the matching routine in the treatment of
recursion, unification, etc., but follows the basic and derived subtyping rules.
The recursive calls inside the subtyping routine may run into terms which are

not types; subtyping then reverts to ordinary matching.

9. Conclusions

We have presented a type system based on dependent types and subtypes,
and sketched some typechecking techniques which make it viable as a type
system for practical programming languages. Its expressive power allows it to
model a great variety of advanced programming concepts, like polymorphism,
abstract types, parametric modules and multiple inheritance [Mitchell 85]
[Burstall 84] [Cardelli 85].

A prototype typechecker has been built incorporating dependent types,
subtypes, recursive types and limited type inference. Much has to be done to
clean up and formalize the typechecking algorithm, but the current experiment is
very encouraging. The kernel of the algorithm is based on a typed version of
well-know lazy-evaluation techniques developed for the A-calculus [Aiello 81].
The performance is comparable to unification-based polymorphic typecheckers.
We believe side-effecting operations can be embedded in this framework, but
they require stratification in the type system to keep impure behaviour confined
at "run-time".

There are no known mathematical models for the type system presented here;

the consistency question is open.
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