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Abstract. Simple computations can be performed using the interactions
between single-stranded molecules of DNA. These interactions are typically
toehold-mediated strand displacement reactions in a well-mixed solution.
We demonstrate that a DNA circuit with tethered reactants is a distributed
system and show how it can be described as a stochastic Petri net. The system
can be verified by mapping the Petri net onto a continuous time Markov
chain, which can also be used to find an optimal design for the circuit. This
theoretical machinery can be applied to create software that automatically
designs a DNA circuit, linking an abstract propositional formula to a physical
DNA computation system that is capable of evaluating it.

Computation with DNA has been the subject of much interest from the points
of view of both pure computer science and nanomedicine. A 2009 paper by Andrew
Phillips and Luca Cardelli showed how DNA strand displacement can be thought of as
a formal computing language [8]. Further work by Matthew Lakin and colleagues pro-
duced Microsoft Visual DSD, a computational tool for the design and analysis of such
reactions [6]. In the field of nanomedicine, Benenson et al. created a biomolecular DNA
computing system that can produce an mRNA inhibitor to control gene expression [2].

These papers all consider DNA strands as freely floating reactants in a well-mixed
solution. There are no topological or geometric constraints that prevent two species
from interacting. Such constraints can be introduced by tethering DNA reactants to
rigid structures. Yin and colleagues designed a DNA Turing machine that operates
by DNA walkers moving on a rigid lattice [11]. Another method utilizes the tethering
of walkers to a DNA origami tile [9]. In a 2005 paper, Jonathan Bath and colleagues
introduced a DNA walker powered by a nicking enzyme that is capable of traversing
a track of single-stranded DNA anchorages (Figure 1) [1]. Shelley Wickham and
colleagues built on this design in a 2011 paper that demonstrated how the walker could
be programmed to navigate a series of tracks on an origami tile [10]. The result was a
DNA walker that could perform a computation, namely a binary decision tree. This is a
“local” computation that is performed by reactants that are tethered to the origami tile.

Localized DNA computation has also been the subject of theoretical and com-
putational study. A recent paper by Dannenberg et al. analyzed the computational
potential of localized DNA circuits [3]. Lakin and colleagues incorporated tethered
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Fig. 1: The “burnt-bridges” DNA walker from [1]. Single-stranded oligonucleotides
are shown as arrows, with the arrowhead indicating the 3’ end. Step 1 A DNA
walker (shown in blue) is bound to a complementary single-stranded anchorage (Ai),
completing the restriction site (red box) for a nicking enzyme. Step 2 The nicking
enzyme cuts the 5’ end of anchorage Ai, exposing a 6-nucleotide toehold on the 3’
end of the DNA walker. Step 3 The toehold on the walker binds to the next anchorage
in the track, anchorage Ai+1. Step 4 The DNA walker moves from anchorage Ai to
Ai+1 via a toehold-mediated branch migration reaction. By continuously repeating
Steps 1-4, a DNA walker can navigate down a track of single-stranded anchorages.

DNA reactants into Microsoft Visual DSD, allowing for topological and geometric
constraints in DNA circuits [7]. This software brings the functionality of Visual DSD
to localized DNA computation circuits: It can perform probabilistic model checking,
detect leaks, and provide information about reaction rates.

We demonstrate how localized DNA circuits can be analyzed as distributed
systems. As such, they can be automatically designed and verified by software. The
input to the localized DNA circuit can be posed using the language and grammar of
the propositional calculus (Section 1). This input is then abstracted into a directed
graph that captures the topology of the circuit (Section 2). Because the localized
DNA circuit is a distributed system, it can be modeled as a stochastic Petri net.
Analysis of this Petri net determines the geometry of the circuit (Section 3).



1 The Propositional Calculus of DNA Localized
Computation Circuits

The language of a propositional calculus is composed of two parts: The first is a set of
propositional variables, or atomic statements that each hold exactly one truth value
(1 or 0); the second is the set of logical connectives, or operators that act on the propo-
sitional variables. A propositional formula is a string of propositional variables and
logical connectives that is said to be well-formed if it follows the rules of the grammar.

Localized DNA computation systems can be designed to evaluate propositional
formulae, and their action can be written in the formal language and grammar of the
propositional calculus. The set of all logical connectives Ω can be partitioned into dis-
joint subsets according to their arity, or the number of arguments each connective takes:

Ω = Ω0 ∪Ω1 ∪Ω2 ∪ · · · ∪Ωn.

For localized DNA computation systems, attention is restricted to nullary, unary,
and binary logical connectives where,

Ω0 = {0,1} ,
Ω1 = {¬} ,
Ω2 = {∨,∧,→,↔} .

The rules of the propositional calculus can be used to search for a simpler form
of a propositional formula in order to make the corresponding DNA computation
system more efficient. For example, the propositional formula

(x ∧ y) ∨ (x ∧ z) (1)

has three logical connectives, and hence will require three logic gates. In this case,
it is possible to find an equivalent form that requires only two:

(x ∧ y) ∨ (x ∧ z) ≡ x ∧ (y ∨ z). (2)

There are libraries available that can implement heuristics for such a search, e.g.
SymPy [4].

2 Directed Graph Abstraction

An input propositional formula, like those described in the previous section, can be
used to find the topology for a localized DNA circuit. Every propositional variable is
represented by a track, or linear array of DNA anchorages tethered to an origami tile,
and a DNA walker. If the propositional variable holds the value 1, then the walker
will begin walking at the start of its track. Tracks that always take the value 1 have
a DNA walker that will always start walking.

DNA walkers are able to perform universal Boolean logic if they are able to block
other walkers on tracks that intersect their own. It is straightforward to construct
a NOR gate, which is a functionally complete operator, using track blockage (Figure
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Fig. 2: Track diagrams showing one possible choice of design for NOR,NOT,OR, and
AND logic gates that use the interaction (blockage) between DNA walkers. Each
walker stays on its own track, and all walkers begin stepping at the same time. Walkers
denoted by 1 will always walk while x and y are walkers that will only start walking
if their respective propositions are true. Walkers can block another track at the
junctions marked with a red cross. The gate evaluates to 1 if the walker whose track
has END at the end of it is indeed able to make it to the end without being blocked.

2, top left). Figure 2 shows both an AND gate constructed out of NOR gates and
an alternative design that is simpler and uses fewer tracks.

A formula written in the propositional calculus, together with the chosen design
for each gate, is enough to completely determine the topology of a corresponding DNA
walker circuit. In the context of DNA localized computation systems, topology refers
to “connectedness” of the tracks. Two tracks are said to be topologically connected
if they intersect so that the walkers on both tracks can interact with each other.

More formally, for any chosen gate design, it is possible to describe the topology
of each gate in terms of a directed graph GD = (V,E) where V is a set of vertices
and E is a set of edges represented as ordered pairs. For the NOR gate,

V = {1, x, y} , E = {(x,1), (y,1)} .

The set V can be interpreted as the gate having three tracks, one for each of walkers
{1, x, y}. The set of ordered pairs E indicates that the x walker blocks the 1 walker
and the y walker blocks the 1 walker. Figure 2 shows one possible choice of gate
design. Once a choice is made, directed graphs can be constructed for each gate as
shown in Table 1. Directed graphs for the gates can be pieced together to form one
directed graph for the whole circuit, capturing the topology of a DNA circuit that
evaluates the propositional formula.

Adding the directed graph abstraction between the propositional formula and
its resulting track diagram has a number of advantages. At the topological level,



V E
NOR {1, x, y} {(x,1), (y,1)}
NOT {1, x} {(x,1)}
OR {11,12, x, y} {(12,11), (x,12), (y,12)}
AND {1, x, y} {(1, x), (y,1)}

Table 1: The sets of edges E and vertices V in the directed graph that correspond
to each logic gate. Subscripts are used to differentiate between unique tracks.

the system becomes easier to analyze and simplify by automated means. The
most immediate example is detecting certain redundancies, which can informally
be thought of as double negatives. For any tracks a and b, if there exists a path
{(a,1i), (1i,1j), (1j , b)} ⊂ E, then we may replace this path by {(a, b)}. In logical
terms, this is the equivalent of writing ¬(¬b) = b.

FANOUT

A key use of the directed graph structure is that it can represent circuits that cannot
be posed in the propositional calculus. The most immediate example is FANOUT,
which can be written as a directed graph:

V = {x,11,12,13,14} ,
E = {(x,11), (x,12), (11,13), (12,14)} .

As shown in Figure 3, FANOUT requires an additional property of the walker-track
system: The walker must be able to block a track and keep walking, blocking ad-
ditional tracks thereafter. This property, as well as the FANOUT gate itself, is not
necessary to perform universal Boolean logic. It can, however, be useful in simplifying
track designs by using fewer walkers overall.

Fig. 3: A track diagram of a possible design choice for a FANOUT gate. This design
requires a walker that can block a track and keep walking, blocking other tracks
thereafter.



3 Localized DNA Circuits as Distributed Systems

This section shows how introducing another piece of information, a tolerance for the
probability of error, allows one to use the circuit topology to find a circuit geometry.
A geometry defines the length of each track and specifies the locations where the
tracks intersect. The tools needed to find this information come from analyzing the
localized DNA circuit as a distributed system.

A distributed system is a network of autonomous computers that can perform a
coordinated action by passing messages between different computers in the network.
When the anchorages on an origami tile are viewed as networked computers and the
walker is viewed as the the message, a localized DNA computation system becomes
a distributed system. The advantage of looking at the DNA circuit in this light is
that it can be readily represented and analyzed as a Petri net.

3.1 Stochastic Petri Nets

The “burnt-bridges” walker-track system from [1] can be modeled as shown in Figure
4, upper. The initial marking shows the DNA walker, represented by a token, on the
first anchorage G1. The stochastic Petri net allows each walker a stepping rate, or
the rate at which it steps forward onto the next anchorage. The transition from the
first anchorage G1 to the second anchorage G2 fires at the rate at which the walker
steps from one anchorage to the next. Such transitions require two tokens to fire. The
tokens in the bottom row of nodes are used up as the walker steps forward, so another
walker will not be able to step down the track after the current walker has finished.
Physically, this bottom row of nodes represents the 5’ end of the anchorages that
are irreversibly nicked by the nicking enzyme. A reusable track can be represented
in a similar fashion (Figure 4, lower). In both cases, walkers are assumed to only
step forward and remain on the last anchorage once they reach the end of their track.

G1 G2 G3 G4 G5

G1 G2 G3 G4 G5

Fig. 4: upper Stochastic Petri net representation of the “burnt-bridges” walker from
[1]. This track can only be used once, as the tokens in the bottom row of nodes are
used up as the walker steps. lower Stochastic Petri net of a reusable track. Each
transition only requires one token to fire, and no tokens are used up in the process.

Junctions between tracks are needed to implement the entire localized DNA
circuit as a stochastic Petri net. Figure 5 shows a Petri net where a designated



blocking walker (blue walker) can block another walker (green walker) if the blue
walker arrives at the junction first. If the green walker arrives at the junction first,
it steps through to the end of its track as normal.

B1 B2 B3 B4 B5

G1 G2 G3 G4 G5

Fig. 5: Two tracks, green and blue, with a blocking junction on the third anchorage
of each track (G3 and B3). If the blue walker arrives at the junction first, it can
block the green track by using up the token of the shared node (shown in red).

A stochastic Petri net can be mapped directly onto a Markov process. If the DNA
system can be posed as a Petri net, then it can be mapped onto a continuous time
Markov chain (CTMC). Using this CTMC, the probability of certain properties of
the system can be computed using techniques from formal verification.

3.2 Designing a System Using Formal Verification Techniques

The localized computation systems discussed thus far operate under the assumption
that all DNA walkers, if they walk at all, begin walking at the same time and walk
at the same rate. This imposes certain length restrictions on the tracks. In the NOT
gate, for example, the track for the 1 walker must be sufficiently longer than the
track for the x walker so that the 1 walker does not arrive at the junction first. If it
does, a missed chance error has occurred because the x walker has missed its chance
to block the 1 walker.

By representing the DNA system as a Markov chain and analyzing it for each possi-
ble combination of track lengths, one can search for a design that is optimal in the sense
that it is compact and minimizes the probability of missed chance errors. Starting from
the state corresponding to the initial marking of the Petri net, the system is allowed to
evolve according to the CTMC. Earlier, it was assumed that all walkers can only step
forward, if they step at all, and that walkers do not move forward once they are blocked
or reach the end of their track. Hence, the Markov chain is an absorbing Markov chain,
and an absorbing state will always be reached if the system runs to equilibrium. The ab-
sorbing states can be divided into two groups: one group that corresponds to a missed
chance error for at least one junction, and another group that corresponds to correct op-
eration. Analysis of the CTMC determines the probability with which the system ends
up in missed chance error state or a correct state after it is allowed to run for a long time.



Prism provides a natural scripting language for representing complex systems
as Markov chains in continuous time [5]. It also allows the user to evaluate the
probability of certain conditions, such as the probability of eventually ending up
in a certain state. For example, if a walker B is intended to block a walker G, Prism
should check the following property:

P = ? [B=end & G>intersection].

In Prism’s language, this is the probability that the G walker has moved through
the junction before the B walker has arrived to block it. This statement measures
the probability of a missed chance error for that junction. Due to the modular nature
of the Prism language, the code can be automatically generated from the directed
graph structures described in the previous section.

Model checking can be used to determine the system with the shortest tracks that
still has a missed chance error below a given tolerance. Finding this balance is critical:
A compact system is easier to design and fit onto an origami tile, but tracks that are too
short will cause missed chance errors. The output is the assignment of a natural number
to each track for the smallest number of anchorages needed to stay within the specified
tolerance for missed chance error. Assuming that a track is always blocked on its
penultimate anchorage, this is sufficient to determine the track geometry of the system.

3.3 Illustrative Example 1: Track Design

This theoretical machinery forms the foundation for software that can design track
systems. The only inputs required are a propositional formula, a choice of gate design,
and a tolerance for missed chance error. The plot in Figure 6 was automatically
generated in this way.

The simplified propositional formula in Equation 2 can be arranged into a
parsing tree based on its logical connectives. Prism can be used to find the lengths (in
anchorages) of each track that minimizes missed chance error. Using a tolerance of 0.15
probability for missed chance error results in the following optimized track lengths:

11 = 14 anchorages,12 = 13 = 7 anchorages, x = y = z = 2 anchorages.

Using the lengths of each individual track shown above and the blocking topology
from the directed graph, a track design is generated that evaluates the original
propositional formula (Figure 6).

3.4 Illustrative Example 2: DNA Mechanism

Figures 7 and 8 show an example of a DNA walker mechanism that implements the
junction in Figure 5, whereby one walker (shown in blue) blocks another (shown in
green). The notation used is similar to that of Microsoft Visual DSD. Single-stranded
oligonucleotides are represented by arrows, as in Figure 1. Domains are printed
as short strings of characters, such as B, and a domain’s reverse complement is
appended with an asterisk. For example, the reverse complement of B is B*. Certain
domains contain a restriction site for a nicking enzyme. When a restriction site is
completed by hybridization to its reverse complement, the location where the nicking



Fig. 6: Final design of the DNA localized computation system that can evaluate
Equation 2. Each anchorage is represented by a light orange circle. The individual
tracks, along with their directionality, are indicated by orange arrows. Each track
is labelled at its starting anchorage by the name of the walker that walks along it.

enzyme will cut is indicated by a small red arrow. The mechanism requires that the
nicking enzyme does not cut at certain domains that closely resemble the restriction
site. These domains contain a restriction site mismatch, where one nucleotide in the
restriction site has been altered. Domains containing a restriction site mismatch are
indicated with an underscore. Locations where the anchorages are tethered to the
origami tile are shown with an orange dot.

The green walker is made up of a short toehold domain Gt at the 3’ end and
a longer primary domain Gp at the 5’ end. The blue walker is similar, with two
important differences. First, the blue walker is in reverse orientation to the green
walker. Its toehold domain is at the 5’ end. Second, the blue walker has an extra Gt*
“tail” domain at the 3’ end. A junction anchorage is located where the two tracks
intersect and acts as a transducer, whereby the blue walker can convert the junction
anchorage from a normal anchorage to a trap that will block the green walker.

If the green track is unblocked (i.e. the blue walker has not arrived at the junction
anchorage) then the green walker steps onto the auxiliary [Gt*Gp*Bp] strand that is
hybridized to the junction anchorage. The auxiliary strand resembles a normal green
track anchorage (Figure 7). The restriction site for the nicking enzyme is completed,
the junction anchorage is cut, and the green walker steps on as normal. If the blue
walker arrives at the junction anchorage first, it binds to the Bt* toehold domain on
the junction anchorage and displaces the auxiliary green anchorage from the junction
(Figure 8). This strand then diffuses away in solution. The 3’ tail on the blue walker
also displaces the Gt* domain in the [Gt* Gp*] trapping strand. When the green
walker arrives at the junction, it binds to the toehold on the trapping strand that was
exposed by the blue walker. The green walker hybridizes to the trapping strand and
displaces it from the junction anchorage. A restriction site mismatch in the trapping
strand makes the trap-green walker duplex inert and the duplex diffuses away in
solution. Hence, the green walker has been blocked and removed from the track.
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Fig. 7: The green walker arrives at the junction first. It can move through the
junction and proceed down its track.

4 Conclusions

We have shown that localized DNA computation circuits can be analyzed as dis-
tributed systems. A propositional formula, a choice of gate design, and an error
tolerance are enough to determine the geometry of the track system. There are simple
blocking mechanisms for junction anchorages at the intersection between tracks that
make such systems realizable.

The software and theory developed here can be improved upon by using it together
with previously developed tools. One challenge in designing any DNA circuit is
preventing unwanted interactions between domains. As the circuit gets more complex,
these leaks become more and more difficult to identify by hand. Microsoft DSD
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Fig. 8: The blue walker arrives at the junction first, exposing the toehold of a trap for
the green walker. When the green walker arrives, it is trapped and the track is blocked.

already has automated means of detecting such leaks at the domain level. At the
sequence level, NUPACK is an easy-to-use tool that can find suitable nucleotide
sequences for a given design [12]. The three pieces of software can work together to
first design a localized DNA circuit using the methods described above, then compile
Microsoft DSD code to check for errors at the domain level, and finally compile
NUPACK code to generate nucleotide sequences for each strand.

A challenge of working with DNA localized computation systems is making the
system compact enough to fit on an origami tile while maintaining a low probability
of missed chance error at the junctions. We can imagine a logic gate on an origami
tile that, if it evaluates to 1, activates a messenger strand that can set another
walker stepping on a different origami tile. Such a mechanism can help alleviate the



compactness issue. It would also increase the ability of localized DNA circuits to
scale up and work with a higher reliability.

GitHub Repository

The software written to generate track designs is open source and freely available
via the GitHub clone URL https://github.com/MBoemo/DLCC.git.
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